
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Order Number 9210151

An investigation of the effects of computer-aided software
engineering tools, system complexity, and system analyst's
experience on system design quality and productivity: A
laboratory experiment

Ongkasuwan, Metta, Ph.D.

Georgia State University - College of Business Administration, 1991

Copyright ©1991 by Ongkasuwan, Metta. All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

AN INVESTIGATION OF THE EFFECTS OF
COMPUTER-AIDED SOFTWARE ENGINEERING TOOLS,

SYSTEM COMPLEXITY, AND SYSTEM ANALYST'S EXPERIENCE
ON SYSTEM DESIGN QUALITY AND PRODUCTIVITY:

A LABORATORY EXPERIMENT

BY

METTA ONGKASUWAN

A Dissertation Submitted in Partial Fulfillment
of the Requirements for the Degree

of
Doctoral of Philosophy

in the
College of Business Administration

of
Georgia State University

GEORGIA STATE UNIVERSITY
COLLEGE OF BUSINESS ADMINISTRATION

DEPARTMENT OF COMPUTER INFORMATION SYSTEMS
1991

www.manaraa.com

ACCEPTANCE

This dissertation was prepared under the direction of
the candidates's Dissertation Committee. It has been
approved and accepted by all members of that committee, and
it has been accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in
Business Administration in the College of Business
Administration of Georgia State University.

College of Business Administration

Dissertation Committee:

Member

Member

Member

N

www.manaraa.com

Copyright by
METTA ONGKASUWAN

1991

www.manaraa.com

PERMISSION TO BORROW

In presenting this dissertation as a partial fulfillment of
the requirements for an advanced degree from Georgia State
University, I agree that the Library of the University shall
make it available for inspection and circulation in
accordance with its regualtaions governing materials of this-
type. I agree that permission to quote from, to copy from,
or to publish this dissertation may be granted by the author
or, in his absence, the professor under whose direction it
was written or, in his absence, by the Dean of the Graduate
Division, College of Business Administration. Such quoting,
copying, or publishing must be solely for scholarly purposes
and does not involve potential financial gain. It is
understood that any copying from or publication of this
dissertation which involves potential gain will not be
allowed without written permission of the author.

the Author

www.manaraa.com

ACKNOWLEDGEMENTS

A doctoral research is a challenge and required support

and interest from individuals, faculties, colleagues, and

friends. This dissertation is a result of the collective

efforts of many people in searching for better understanding

of interested issues over a period of time. An exceptional

recognition and thanks go to Dr. Kuldeep Kumar, chairman of

my dissertation committee, for his outstanding dedication

and contribution throughout my doctoral research -at the

Computer Information Systems Department, College of Business

Administration, Georgia State University, Atlanta, Georgia.

Additional recognition and thanks also go to Drs. Bikramjit

Garcha, Connie Wells, Charles Williams, Vijay Vaishanavi,

Gordon Howells, and Karen Loch for their genuine interest

and support throughout the course of this dissertation.

My doctoral research would not be complete without the

sincere contribution from my colleagues and friends from IBM

Corporation, KnowledgeWare, AT&T, U.S. Department of State

of Georgia, California State University at Sacramento,

University of California at Davis, Georgia State University,

and Kennessaw College.

Finally, I am thankful to my parents and indebted to

Chairat for their love, patient and endless support

throughout my doctoral study and research in the United

States.

iv

www.manaraa.com

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS V

LIST OF TABLES ix

LIST OF FIGURES xi

ABSTRACT xii

Chapter

I INTRODUCTION 1

Introduction 1
Focus of the Research 5
Objectives of the Research 9
Organization of the Dissertation 10

II LITERATURE REVIEW 12

Literature on Computer-Aided Software Engineering.... 12
CASE Tools 13
Strengths and Weaknesses of CASE Tools 14
Previous Research on the Impacts of CASE Tools
on the Productivity and Quality of System
Development 16

Literature on System Development Productivity 24
General Definitions and Measurements of System
Development Productivity 24

Variables Affecting System Development
Productivity 26

Literature on System Development Quality 30
Literature on System Analyst's Experience 35
Literature on System Complexity 40

Software and Program Complexity 40
System Complexity 43

Summary 46

III RESEARCH MODEL 47

Research Framework 47
Research Model 49

v

www.manaraa.com

Model Variables 52
Independent Variables 52
Dependent Variables 54

Research Questions 55
Summary 58

IV RESEARCH METHODOLOGY 59

Selection of the Research Methodology 59
Experimental Design 60
Experimental Subjects 62

Less Experienced System Analyst Subjects 62
More Experienced System Analyst Subjects 65

Experimental Tasks 67
Experimental Procedures 68
Experimental Variables 71

System Design Tools Variable and Its Levels 71
System Complexity Variable and Its Levels 71
System Analyst's Experience Variable and
Its Levels 75

Syntactic Quality Measure " 76
Productivity Measure 78

Data Collection-Procedures 80
Statistical Analysis Methods.. 81
Summary 82

V EXPERIMENTAL RESULTS 85

Testing the Significance of the Effects of System
Development Tools, System Complexity, and System
Analyst's Experience on the Syntactical Quality
and Productivity 86

ANOVA Results for Syntactical Quality 89
ANOVA Results for Productivity of Syntactic
Verification Tasks 91

Comparing the Use of Traditional and CASE Tools with
Respect to their Performance in Syntactical
Quality and Productivity 94

Difference in Syntactical Quality Generated by
the Use of Traditional and CASE Tools 95

- Difference in Productivity of the Syntactic
Verification Tasks Generated by the use of
Traditional and CASE Tools 97

Examining Effects of System Complexity and System
Analyst's Experience on Syntactical Quality and
Productivity Performance of the Use of Traditional and
CASE Tools 99

Effect of System Complexity on Syntactical
Quality and Productivity Performance of the
Use of Traditional and CASE Tools 99

Effect of System Complexity on Syntactical
Quality 102

vi

www.manaraa.com

Effect of System Complexity on Productivity
of Syntactic Verification Tasks 103

Effect of System Analyst's Experience on
Syntactical Quality and Productivity
Performance of the Use of Traditional and CASE
Tools 104

Effect of System Analyst's Experience on
Syntactical Quality 104

Effect of System Analyst's Experience on
Productivity of Syntactic Verification
Tasks 107

Summary and Discussion of Major Findings 108

VI ADDITIONAL RESULTS BASED ON DIRECT OBSERVATION AND
POST-EXPERIMENTAL INTERVIEW DATA . 114

System Analyst's Attitude Toward System Development
Tools 115

Alternative Explanation of Poor Performance Provided
by the Representative CASE Tool 119

An Investigation of How System Analysts Perform the
System Verification Tasks Using a Given Tool....... 121

Task Pattern within Traditional Tool Treatment.. 122
Task Patterns within the CASE Tool Treatment.... 123

An Analysis of the Use of Task Patterns
within the CASE Tool Treatment 126

The Relationship between Task Patterns and
Syntactical Quality and Productivity of
Syntactic Verification Tasks 128

An Examination of the Use of Selected Features of
the Representative CASE Tool 129

Analysis Feature 131
Graphics Feature 135
Data Dictionary Feature 136

Summary 137

VII CONCLUSION, IMPLICATIONS, AND DIRECTIONS FOR
FURTHER RESEARCH 138

Conclusions 138
Summary of Major Findings 139
Implications of the Research 139

Designers of CASE Tools 140
Adopters and Implementors of CASE Tools 141
MIS Researchers 141

Limitations of the Research 141
Directions for Further Research 14 3

APPENDIX A: CONSENT FORM 145

APPENDIX B: SUBJECT BACKGROUND QUESTIONNAIRE 146

vii

www.manaraa.com

APPENDIX C: SIMPLE SYSTEM DESIGN PROBLEM CASE 149

APPENDIX D: COMPLEX SYSTEM DESIGN PROBLEM CASE 161

APPENDIX E: ACTUAL SEEDED ERRORS IN THE SIMPLER SYSTEM
DESIGN PROBLEM CASE 192

APPENDIX F: ACTUAL SEEDED ERRORS IN THE COMPLEX SYSTEM
DESIGN PROBLEM CASE 194

APPENDIX G: THE EXPERIMENTAL DATA..." 201

APPENDIX H: EXAMPLES OF TASK ANALYSIS REPORT 202

APPENDIX Is EXAMPLE OF POST-EXPERIMENTAL INTERVIEW 212

APPENDIX J: EXAMPLE OF ANALYSIS REPORT 213

BIBLIOGRAPHY 216

VITA 230

viii

www.manaraa.com

LIST OF TABLES

Table Page

1 Stages and Phases of Systems Development Life Cycle.. 3

2 A List of Research Questions and Issues Relating
to CASE Tools 6

3 Functions and Features of CASE Tools 15

4 Strengths and Weakness of CASE Tools 17

5 A Summary of Selected Research on the Impacts of
CASE Tools on System Development Productivity and
Quality 18

6 A Summary of Literature Related to System Design
Quality 31

7 A Summary of Literature Related to System Analyst's
Experience 36

8 Software, Program, and System Complexity Measures.... 41

9 A Summary of the Qualification Requirements for Less
and More Experienced System Analyst Subjects 63

10 Experimental Variables and Their Levels 72

11 Comparison of the System Complexity of the Billing
System Problem (Simpler) Case and the Inventory
Control System Problem (Complex) Case 74

12 A List of the Categories and Types of Seeded Errors.. 77

13 MANOVA Results 87

14 ANOVA Results on Syntactical Quality 90

15 ANOVA Results on Productivity of Syntactic
Verification Tasks 92

16 Differences in Syntactical Quality Generated by
Traditional and CASE Tools (n=4) 96

17 Differences in Productivity of Syntactic Verification
Tasks Generated by Traditional and CASE Tools (n=4) 98

18 Effect of System Complexity on the Syntactical
Quality and Productivity Performance of Traditional
and CASE Tools (n=8) 100

ix

www.manaraa.com

19 Effect of System Analyst's Experience on the
Syntactical Quality and Productivity Performance
of Traditional and CASE Tools 105

20 Summary of the MANOVA and ANOVA Results 110

21 A Summary of CASE and Traditional Tools Preferences by
Users 116

22 Task Patterns Within the CASE Tool Treatment (n=16).. 127

23 Task Analysis Results 13 0

24 A Brief Overview of the Features of the
Representative CASE Tool 132

x

www.manaraa.com

LIST OF FIGURES

Figure Page

1 Research Framework 48

2 Specific Research Framework 51

3 Research Model 53

4 A Schematic Representation of the Experimental
Design 61

5 Experimental Procedures 69

6 Effect of System Development Tools and System
Complexity on the Syntactical Quality and
Productivity 101

7 Effect of System Development Tools and System
Analyst's Experience on the Syntactical Quality
and Product ivity 106

8 Task Patterns Within the Traditional Tool and the CASE
Tool Treatments 124

xi

www.manaraa.com

ABSTRACT

AN INVESTIGATION OF THE EFFECTS OF COMPUTER-AIDED SOFTWARE
ENGINEERING TOOLS, SYSTEM COMPLEXITY, AND SYSTEM ANALYST'S
EXPERIENCE ON THE SYSTEM DESIGN QUALITY AND PRODUCTIVITY:

A LABORATORY EXPERIMENT

By

METTA ONGKASUWAN

October, 1991

Committee Chairman: Dr. Kuldeep Kumar

Major Department: Computer Information Systems

The primary purpose of this research is to investigate

the effects of the use of Computer-Aided Software

Engineering (CASE) tools on the syntactical quality of the

system design specifications and productivity of the

syntactic verification tasks. These effects are

investigated under varying levels of system complexity and

system analyst's experience.

In this research, a controlled laboratory experiment

using both non-professional and professional system analysts

as subjects was conducted to achieve the primary purpose.

Multivariate Analysis of Variance (MANOVA), series of

Analysis of Variance (ANOVA), and pair-wise t test were used

to quantitatively analyze the experimental data. Protocol

analysis of the experimental tasks was used to qualitatively

analyze and explain the quantitative results.

The major findings from this study are summarized as

xii

www.manaraa.com

follows. First, the use of CASE tool provides lower quality

and productivity than traditional tool (paper and pencil).

Second, if CASE tool is used as intended by its developer,

it provides better quality and productivity than when it is

used in the same manner as traditional tool. However, CASE

tool still provides lower quality and productivity

performance than traditional tool even when it is used as

intended. The problem of poor performance of CASE tool

seems to lie in the way each feature of CASE tool is used

(e.g., difficult to use and connect information). Finally,

system complexity and system analyst's experience do not

seem to affect the quality and productivity of the use of

CASE tool.

xiii

www.manaraa.com

CHAPTER I

INTRODUCTION

The issue of computer-based information system

development has evoked considerable interest and attention

from both MIS managers and researchers. A survey conducted by

Hartog and Herbert (1986) identified system development as one

of the five most important issues facing MIS managers.

Several MIS researchers (Acly, 1988; Bubenko, 1986; Jeffery,

1987; Olle, Hagelstein, Macdonald, Rolland, Sol, Asche &

Verrijn-Stuart, 1986) also report that a "software crisis"

exists in many industries. This crisis is characterized by

problems of low system design quality, low system designer

productivity, and ineffective management of the system

development process. Two reasons are suggested for this

crisis: an increased demand for better software quality, and

an increased pressure for MIS organizations to improve system

development productivity. Studies by Alloway and Quillard

(1983) and Konsynski (1984) report problems of increasing

software development backlogs. A survey by Konsynski in early

1980s discovered that these backlogs range from one to four

years. As a result, a major challenge for MIS organizations

is to find more efficient and effective methodologies and

tools for improving system development productivity and

quality.

1

www.manaraa.com

2

A variety of system development methodologies have been

proposed as the means for increasing the effectiveness of

system development process. These methodologies provide

guidelines for progressing through various phases in system

development life cycle (see Table 1) (Davis & Olson, 1984).

Examples of these methodologies include:

Structured analysis and design methodology (DeMarco,

1978; Gane & Sarson, 1979; and Yourdon, 1989);

Data-oriented methodologies (Warnier, 1981; Martin,

1988) ;

- Socio-technical system methodology (Mumford, 1981); and

Decision-oriented development methodology (Keen & Scott-

Morton, 1978) .

These methodologies employ a variety of tools to model,

represent, analyze, and specify the system under development.

They also provide a variety of rules that assist system

analysts in verifying system models or representations for

correctness, consistency and completeness.

Two key problems have limited the effectiveness of most

of these methodologies: the excessive paperwork required for

system specifications, and the complexity of system

development tasks. As system specifications evolve through a

series of iterations, a large amount of effort is needed to

keep and maintain a correct and complete set of specifications

for the system. The time and cost to develop and maintain a

complete and correct set of specifications have been found by

some

www.manaraa.com

Table 1

Stages and Phases of Systems Development Life Cycle

Stages in
life cycle Phases in life cycles Description

Definition: Proposal definition
Feasibility assessment

Preparation of request for a proposed application.
Evaluation; of feasibility and cost/benefit of
proposed application.

Information requirements Determination of information needed.
analysis

Conceptual design User-orierited design of
application.

Development: Physical design Detailed design of data flows and processes in
application processing system and preparation of
program specifications.

Physical database design Design of internal schema for data in database or
design of files.

Program development Coding and,testing of computer programs.
Procedure development Design of procedures and preparation of user

instructions.

Installation
and

Operations:

Conversion
Operation & maintenance

Post audit

Final system test and conversion.
Day-to-day.operation, modification, and
maintenance.
Evaluation of development process, application
system, and results of use.

www.manaraa.com

4

authors as too difficult to justify (Chickosky, 1988; Demarco,

1987; Yourdon, 1978).

The quest for greater productivity and quality in the

current information systems development practices has led to

the introduction of computer-assisted system development

tools. These tools are expected to make it practical and

economical to use these methodologies effectively in the

development and maintenance of complete and correct set of

system specifications.

These tools, which are commonly known as "Computer-Aided

Software Engineering" or "Computer-Aided System Engineering"

(CASE) tools, provide system analysts with computer support

for developing and validating system specifications. In

general, these tools support system development activities

throughout system development life cycle (Newman, 1982;

Konsynski, et al. 1984; Hoffnagle & Beregi, 1985; McClure,

1989; Martin, 1988). These tools also provide system analysts

with powerful diagnostic features designed to ensure

consistency, completeness and correctness of system

specifications. Other features of these tools include:

graphical features which help build and modify graphical

representation of the systems (e.g., data flow diagrams,

entity-relationship diagrams and other logical data models),

data dictionary which store description of system components,

prototyping and project management features.

CASE tools are being considered by MIS managers as a

panacea for their current system development problems. Many

www.manaraa.com

companies selling CASE tools are advertising that their users

are experiencing substantial improvement in system development

productivity and quality. However, though many organizations

are currently experimenting with these tools, only a few have

fully implemented these tools (Bubenko, 1986). Furthermore,

Betts and Suydam (1987) estimate that only 40% of purchasers

continue to use these tools. Despite this dismal record of

use industry analysts predict that the market for CASE tools

will continue to grow significantly in the 1990s. Therefore,

it is important to assess the effectiveness and impact of

these tools on the information system development process.

-or v....: -focus of the Research • -

The introduction of CASE tools indicates a number of new

avenues for information system research. Table 2 presents a

sample list of research issues suggested by leading MIS

researchers and practitioners (Norman & Nunamaker, 1989; Acly,

1988; Chikofsky & Rubenstein, 1988).

The focus of this research is on investigation of the

effect of CASE tools on productivity and quality of system

development process.

There are two reasons for this focus. First, due to the

quality and productivity implications on the current software

crisis and system development backlog, the management of

quality and productivity of system development process is a

challenge to MIS managers. Second, there seems to be a dearth

www.manaraa.com

6

Table 2

A List of Research Questions and Issues Relating to CASE Tools

Applicability of CASE Tools:

1. What concerns motivate companies to adopt CASE tools and
to what extent do the reasons for adoption have a bearing
on the success of the adoption? What alternative system
development tools are considered?

2. How can CASE users be characterized with regard to
company size, organizational culture, competitive
situation, type of products, MIS strategy, etc.?

3. What attributes characterize companies that have
attempted to implement CASE tools, but, in their view,
failed? What do their experiences reveal about
applicability of CASE tools?

4. How many CASE applications are there in the industry, and
at what rate are they being adopted?

Justification of CASE Tools:

5. Can a generic framework for justifying the adoption of
CASE tools be developed?

6. What factors should be included in the justification of
CASE tools? How should these factors be measured?

7. What are appropriate guidelines for making comparisons of
CASE tools and their alternatives?

8. What are the sources of costs and benefits directly
linked to the use of CASE tools?

9. To what degree does the adoption of CASE tools lead to
improved system development productivity and quality and
the company's competitiveness?

Implementation of CASE Tools:

10. How do we define successful and unsuccessful
implementations of CASE tools?

11. Which factors are critical and which factors are
non-critical for successful implementations of CASE
tools?

12. How to measure the performance of CASE tools?
13. What types of system analysts• skills and training are

essential for successful implementations of CASE tools?
14. To what degree do job classifications and job

descriptions, evaluation and reward systems, and
personnel selection procedures need to change in
connection with CASE tools?

www.manaraa.com

research literature that either supports or disputes

productivity or quality claims advanced by the advocates of

CASE tools.

In this study, the investigation focuses on the effect of

the use of CASE tools on quality of the system specifications

and productivity of the verification tasks during the

requirement specification phase. The verification task

investigated is a subset of verification activities—called

"syntactic verification". Syntactic verification task is

defined as the verification of internal consistency,

correctness, and completeness of the system specifications.

As the CASE tool used in this investigation relies on the

structured analysis and design methodology (DeMarco, 1978;

Gane & Sarson, 1978), the internal consistency based upon the

requirements of structured analysis is defined as consistency

and continuity of naming, defining and numbering of all

enumerated elements in the system specifications. Similarly

in the context of structured analysis, the syntactic

correctness is defined as accuracy and precision of naming,

defining and numbering of all elements in the system

specification. Finally, syntactic completeness is defined in

the sense that all enumerated elements are named, defined and

numbered in the system specifications. Note, due to human

intention based nature of requirements, no system development

tools (with or without computer assisted) can ensure semantic

and pragmatic completeness and correctness in the sense that

all of the users* requirements have been met (Fraser, Kumar, &

www.manaraa.com

8

Vaishnavi, 1991). This investigation is limited to syntactic

verification only.

The primary reason for focusing on the syntactic

verification tasks is the importance of these tasks for

maintaining quality of the system specifications. These tasks

ensure internal consistency, syntactical correctness, and

syntactical completeness of the system specifications. If

verification criteria are not met, the system specifications

may be implemented with errors and further corrective actions

at later stages of system development life cycle would be

needed. Consequently, the syntactic verification tasks ensure

overall quality of the system specifications.

Additional pragmatic reason for focusing on syntactic

quality of the system specifications (instead of semantic

quality of the design specifications) is that the current

generation of CASE tools focus primarily on syntactic

verification and do not provide automated support for semantic

interpretation and verification of the system specifications.

Therefore, a focus on syntactic verification tasks would

examine one of the primary benefits attributed to the use of

CASE tools.

In this research, the productivity and quality benefits

of CASE tools are examined in the context of the structured

analysis and design methodology as described by DeMarco (1978)

and Gane and Sarson (1978). There are three reasons for

using a CASE tool based upon the structured analysis and

design methodology. First, it is a popular, easy to use, and

www.manaraa.com

9

commercially widespread methodology. Second, it provides a

set of syntactic rules for validating the system

specifications. These rules help ensure the consistency,

completeness, and correctness of the system specifications.

Third, it is the basis of many currently popular CASE tools

including the tool used in this study.

Finally some authors (Benbasat & Vessey, 1980; Boehm,

1984; McCabe & Butler, 1989; Norman & Nunamaker, 1989, 1988;

Fickas & Nagarajan, 1988) suggest that the productivity and

quality of the system development process are also affected by

the experience of the system analyst and the complexity of the

system under.development. Therefore,. the productivity and

quality-impacts of CASE tools may be moderated by varying

levels of system analyst's experience and system complexity.

In summary, the purpose of this research is to

investigate the impacts of CASE tools on the productivity and

quality of the syntactic verification tasks under varying

levels of system analyst's experience and system complexity.

Objectives of the Research

The objectives of this research are to:

(1) test if the use of system development tools, system

complexity, and system analysts1 experience have

significant effects on syntactical quality of the design

specifications and on the productivity of the syntactic

verification tasks;

www.manaraa.com

10

(2) compare the performance of the use of CASE and

traditional (paper and pencil) tools with respect to

syntactical quality of the design specifications and

productivity of the syntactic verification tasks; and

(3) examine the effects of different levels of system

complexity (simple versus complex system) and system

analysts* experience (less versus more experienced

analysts) on the syntactical quality and productivity

performance of the use of CASE and traditional tools.

Organization of the Dissertation

This dissertation is organized into seven chapters as

follows.

Chapter I presents the introduction, focus, and

objectives of this research.

Chapter II reviews and discusses previous literature and

research relevant to this research.

Chapter III presents the research framework, research

model, and research questions to be tested.

Chapter IV describes the research methodology,

experimental design, subjects, tasks, procedures and

variables, data collection methods, and statistical analysis

methods used in this study.

Chapter V presents and discusses the statistical analysis

of the experimental data and its results.

www.manaraa.com

11

Chapter VI presents and discusses the protocol analysis

of the data obtained from direct observations and post-

experimental interviews and its results. These results reveal

the system analysts' attitude toward system development tools

and the different ways they perform syntactical verification

tasks during the experiments.

Finally, Chapter VII provides the conclusion, summary of

major findings, limitations, and implications of this

research. Suggestions for further research are also

presented.

www.manaraa.com

CHAPTER II

LITERATURE REVIEW

The purpose of this chapter is to review and discuss

previous literature and research relevant to this study. This

literature review is limited to the literature and research

associated with:

- computer-aided software engineering (CASE);

- system development productivity;

system development quality;

- system analyst's experience and its impact on the

system development process; and

- software, program, and system complexity.

Literature on Computer-Aided Software Engineering

The system development process is a complex process which

is difficult to perform and manage (Langefors, 1973; Welke,

1983). The complexity involved in designing a large and

complex information system would normally exceed the system

analyst's capability to handle all necessary design tasks

(Davis & Olson, 1984). Langefors (1973) has introduced the

term "imperceivable system" to represent a system that has a

very high number of parts and interactions such that its

structure cannot be perceived or observed at one and the same

12

www.manaraa.com

time. Bubenko (1986) has suggested that automated system

design tools may be used to facilitate the system analysts in

performing necessary design tasks required in designing a

large, complex, and imperceivable system.

In general, system design tools may be classified into

two broad types: manual tools and computer-assisted

(automated) tools. Over the past years, system analysts have

used manual tools (e.g., paper and pencil) together with

structuring aids (e.g., dataflow diagrams and data dictionary)

to structure their thinking process. Recently, a new set of

automated tools, known as "Computer-Aided Software

Engineering" or "Computer-Aided System Engineering" (CASE),

have been introduced and adopted by system analysts in many

organizations.

CASE tools

In a broad sense, CASE may be viewed as a system

development philosophy emphasizing an automation of either the

parts of, or, the entire system development life cycle (

Wasserman et al., 1982; Konsynski, et al. 1984). Some

examples of the automated system design tools that support the

design and development of large information systems are

PLEXSYS, KnowledgeWare, Excelerator, Design/1 and PSL/PSA.

CASE tools may be classified further into two broad

categories: front-end CASE (or upper CASE) tools and back-end

CASE (or lower CASE) tools. Front-end CASE tools support

www.manaraa.com

14

system development activities in the early phases of the

system development life cycle (e.g., information requirements

analysis and conceptual design) whereas back-end CASE tools

support the translation of system specifications into

programming code (McClure, 1989; Martin, 1988). Examples of

Front-end CASE tools are "Excelerator" by Index Technologies,

"Design Aid" by Nastec, and "IEW Analysis and Design" by

KnowledgeWare. Examples of Back-end CASE tools include the

"Microstep" programmer workbench by Syscorp Information and

the "POSE" by Computer Systems Advisers. Some tools such as

IEW workbench may include features of both Front-end and Back­

end CASE tools.

CASE tools provide a variety of functions in support of

system design and development tasks. These functions include:

diagramming, error checking, data repository management,

prototyping, code-generation, re-engineering of usable codes,

methodology reinforcement, graphical representation, and

target system selection (McClure, 1989). Table 3 summarizes

some of the common functions of CASE tools and enumerates

examples of features which support such functions.

Strengths and Weaknesses of CASE Tools

CASE tools currently available in the market represent

early stages of evolution of CASE products. Many CASE

developers still continue to improve their CASE products. At

the current state of CASE tools, like any other system design

www.manaraa.com

15

Table 3

Functions and Features of CASE Tools

Function Feature

Diagramming

Error checking

Data repository
management

Prototyping

Code-generation

Data Flow Diagram, Structure Chart,
Decision Table/Matrix, Entity-relationship
diagram.

. Checking Syntax, Consistency,
Completeness, Traceability.

Host-based (Encyclopedia), PC-based (Data
Dictionary), DBMS.

Simulation, Functional Model, Screen
Painter, Report Painter.

Skeleton Program, Complete Program,
'.On-line, or Batch Programs.

Re-engineering
of usable codes

Methodology
reenforcement

Graphical
representation

Target system
selection

Interfaces

Static Analyzer, Re-documentation,
Restructuring, Reverse Engineering,
Dynamic Analyzer.

Structure Analysis and design by Demacro,
Yourdon, Gane/Sarson, Warrnier-Orr;
Information Engineering by James Martin;
and Object-Oriented Design.

Color, Window, Use of Mouse.

On-line or Batch System, Transaction
Processing System, Real-time System,
Embedded System.

Planning, Analysis, Design,
Implementation, Maintenance, and Project
management.

www.manaraa.com

16

and development tools, they have both strengths and

weaknesses. Table 4 provides a summary of the strengths and

weaknesses of CASE tools reported by numerous MIS

practitioners and researchers (Chikofsky, 1988; Connor & Case,

1986; Corkery, 1986; Margolis, 1988; Marcus & Nelson, 1989).

Previous Research on the Impacts of CASE Tools on

the Productivity and Quality of System Development

The introduction of CASE tools in the mid 1980s created

new avenues for MIS research. Table 5 provides a brief

summary of the current CASE research found in IS literature.

Most of the research related to CASE tools is still

exploratory in nature and employs such research methodologies

as case studies and field surveys.

Norman and Nunamaker (1989) conducted a survey of

ninety-one MIS managers from forty-seven organizations using

CASE products. The purpose of their study was to investigate

the system analysts perception regarding:

- their preferences of specific CASE product

components related to productivity;

- if there was any productivity improvement in the

communication process during information systems

development when CASE was employed;

whether there was productivity improvement in

coherence with enterprise system development

standards when CASE was used; and

www.manaraa.com

17

Table 4

Strengths and Weakness of CASE Tools

CASE Strengths:
Improving software quality

- Reducing development time and cost, hence, increase
productivity

- Enforcing software/system engineering standard
- Making prototyping-and structured analysis technique

. practical < -
Enabling reuse of software components (e.g.,
prototypes, data, system and program architectures,
program and data structure designs, data models, and
programming codes)
Simplifying programming maintenance

- Freeing developers to focus on creative part of
software development

- Encouraging evolutional and incremental development
- Improving communication among developers

CASE Weaknesses:
Relying on structured methodologies (SDLC)

- Lacking only a methodology support standard
- Having limited functions

Not providing integrated central repository
Not providing integrated interfaces/tools
Requiring structured analysis and design methodology
skills
Supporting narrow scope of development activities

- Having long learning curve

www.manaraa.com

Table 5

A Summary of Selected Research on the Impacts of CASE Tools on System Development Productivity and Quality

Reference
Research
Method Subjects

Independent
Variables

Dependent
Variables Major Findings

Norman,
Nunamaker
(1989)

Orlikowski
(1989)

Necco,
Tsai,
Holgenson
(1989)

Ryan
(1989)

Survey 91 subjects
know how to
use CASE tools
from 47 U.S.
and Canada
companies

Programmers,
junior analysts,
and senior
managers from
Beta Consulting
Company

63 companies
listed in the
Directory of
Top Executives

Survey 569 ID depart­
ments in U.S.
firms

Case
study

Survey

CASE tools,
standard,
communication

Productivity

CASE tools,
applications,
developers

CASE tools

Organization
structure

CASE tools

Product ivity,
quality of
system design

Cost, quality

The dominance ranking reveals
that DFD is the most time con­
suming. Completeness and con­
sistency checks are the least
important functions. Data
model, E-R diagram have the
most impact on productivity.

CASE tools have disrupted the
social relation among project
members. New skill is needed to
ensure the reliability of
system development in an orga­
nization.

Only 24% of 63 companies use
system design CASE tools. They
claim that CASE tools improve
productivity, quality, and com­
munication among users and
developers.

Users do not expect cost saving
from use of CASE tools. They
expect quality improvement from
CASE.

(Continued...)

www.manaraa.com

Table 5 (Continued)

Research
Reference Method Subjects

Independent
Variables

Dependent
Variables Major Findings

Marcus,
Nelson
(1989)

Yellen
(1990)

Survey 40 programmers
analysts, and
designers who
use CASE tools
in 12 U.S. com­
panies

Experi- 31 juniors and
ment senior students

at University of
North Texas

CASE tools, Productivity
project types,
programming
experience

CASE tools,
manual tools

Quality:
- correctness
- completeness
- communicabi-

lity

The improvement of productivity
depends on suitability of pro­
jects, programming experience
and tools.

CASE tools are superior to
manual tools in term of cor­
rectness. CASE tools do not
help users to develop a com­
plete system nor. to understand
problem better.

www.manaraa.com

20

- the system analysts1 perceptions of CASE product

components with respect to their productivity.

The results from Norman and Nunamaker's study indicate

that system analysts perceived:

that they can identify, via their ordering

preferences, the parts of CASE products that

contribute the most to increase in their

productivity over manual methods;

their communication through CASE products, as

opposed to non-CASE communication, does not make a

significant impact on productivity;

- adherence to information system development

standards when using CASE does not make a

significant impact on productivity; and other

- data flow diagraming feature, data dictionary,

project standardization, and screen and report

design facilities contribute the most to

productivity.

It was also found in Norman and Nunamaker's study that

CASE tools improve productivity and deserve further attention

and evaluation.

Orlikowski (1989) conducted a case study to investigate

the effects of CASE tools on organizational structure and

performance. The subjects were junior system analysts,

programmers, and senior system analysts with and without CASE

tool experience at the Beta Consulting Corporation. Five

different application projects (four large projects and one

www.manaraa.com

21

small project) selected by senior managers were used in this

study. An average of four weeks was spent on observing and

interviewing one project at a time. Overall of one hundred

and twenty interviews averaging one and a half hour per

interview were conducted in this case study. The observations

were made for both a CASE user group and a non-CASE user group

throughout the system development life cycle. The findings

from this study suggested that the introduction of CASE tools

disrupts and changes social relationships among project team

members in the organization. These changes include the

division of labor and the pattern of dependency among team

members. Orlikowski suggested that new specialized skills may

be needed in order"to ensure the quality (reliability) and

productivity of the system development when using CASE tools.

Necco, Tsai, and Holgenson (1989) conducted a survey of

sixty-three MIS organizations listed in the Directory of Top

Computer Executives to determine the current usage of CASE

tools. The results indicate that only twenty-four percent of

the organizations that participated in the study have used

CASE tools. They also reported that the perception of the

organizations using CASE tools is that the productivity of

system developers, quality of system design, and communication

among system developers and users have improved. However,

system developers do not believe that the use of CASE tools

will make maintenance at the later phases easier.

Ryan (1989) conducted a survey of 569 information service

departments to determine the amount of the IS budget allocated

www.manaraa.com

22

to adopting and implementing CASE in their organizations.

Ryan's study found that an average IS annual budget in the

organizations using CASE was $47.7 million, while the budget

in the organizations not using CASE was $16.8 million. Ryan

advocated that even though CASE users did not expect cost

savings from the use of CASE tools, they expected that the use

of CASE tools would be justified by higher quality and

productivity which would require less and easier system

maintenance.

Marcus and Nelson (1989) conducted a survey of forty

programmers, system analysts, and designers who have used CASE

tools at twelve companies. The results of this study indicate

that the productivity improvement through the use of CASE is

dependent on the suitability of the project and the

developers' experience with CASE tools. Nelson and Marcus

suggested that instead of spending time on program coding,

developers should spend more time on planning, analyzing and

designing the system through CASE tools.

Yellen (1990) conducted laboratory experiments to

determine whether CASE tools are capable of improving the

quality of the SDLC process and product. The subjects were

thirty-one juniors and seniors enrolled in a university

information systems curriculum. The subjects were carefully

divided into two homogeneous subgroups according to age, sex,

GPA, and real-world system analysis experience. The first

group was assigned to use a CASE tool to prepare data flow

diagrams and data dictionary entries while the second group

www.manaraa.com

23

was assigned to use a traditional pencil and paper-based

method. The outputs of these two groups were then compared

with respect to three attributes of quality (i.e.,correctness,

completeness, and communicability). The experimental results

indicated that correctness is the only attribute of quality in

which a CASE tool surpasses a traditional paper and pencil

tool. However, a CASE tool was found to support only those

subjects who know how to perform the tasks either with or

without a CASE tool.

In summary, the past studies on CASE tools, except for

Yellen's study (1990), are survey-type studies that measure

the respondents' perception on productivity and quality

improvements due to CASE. In Yellen's study (1990), although

a laboratory experiment was conducted to investigate the

effect of CASE tools on quality of the system design process

and product, the measurement of quality are subjective

judgements. The results from these studies are inconclusive.

Very little is known about the effectiveness of CASE

tools under various environmental factors such as system

developer characteristics, organization characteristics, and

allocation of resources in the organization. Thus, CASE is an

area in which many research issues currently exist. These

issues span a variety of concerns and may require multiple

research methodologies to investigate.

www.manaraa.com

24

Literature on System Development Productivity

This section reviews the literature and previous research

that addresses definitions and measurements of system

development productivity, and the variables that may affect

system development productivity.

General Definitions and Measurements of

System Development Productivity

Davis and Olson (1984) define productivity in information

system development as productivity of system developers such

as system analysts, programmers and knowledge workers. Davis

and Olson, however, do not provide any instruments to measure

the productivity of system developers.

Beruvides and Sumanth (1987) have defined productivity of

system developers as the ratio of the sum of total tangible

outputs to the sum of the total tangible inputs. It can be

mathematically represented by the following equation:

e
TP =

IH + IT

where:

TP = Total productivity
8 = Total tangible output
IH = Human input
IT = IM + Ic + IE + lx
IM = Material input
Ic = Capital input
IE = Energy input
Ix = Other expenses

www.manaraa.com

25

Beruvides and Sumanth have suggested that IT, which is

the sum of material, capital, energy and other expenses

inputs, is relatively small when compared to the human input

(salary). They have also suggested that the total

productivity equation may be appropriate in estimating the

productivity of the system developers if the total tangible

output can be objectively measured.

QED Information Sciences Inc., Wellesley, Massachusetts

(1989) has presented several measures for system development

productivity. Some examples of these measures are man-hours;

costs; ratio of outputs to inputs; professional system analyst

performance measure; productivity changes over time; total

valiae-addecT (e.g., "ratio of iabor value-added to labor cost);

and comparison of productivity at industry level (e.g.,

competitive factors—market share, sales factors, asset

factors, personnel factors, management factors, organizational

factors, information technology factors). Some of these

measures (e.g., ratio of outputs to inputs, man-hours, costs,

system analyst performance measure, and value added) are

quantitative measures and can be used to measure the system

development productivity. QED has suggested that research is

needed to investigate the system development productivity at

the industry level in order to describe the productivity of

system development across different industries. The findings

may be useful in suggesting directions in which the current

organizations should follow and maintain their productivity

level in the industry. However, measures such as total value-

www.manaraa.com

26

added, and comparison of productivity at the industry level

are not applicable to this investigation as the focus of our

study is at the analyst level.

In summary, it was found in the current literature a

majority of productivity measures is based upon the

traditional concept of output/input ratio analysis. A major

difficulty in using this ratio is that it is somewhat

difficult to measure the absolute values of all inputs to, and

the outputs from the system development process.

Variables Affecting System Development Productivity

Various researchers (Pietrasanta, 1980; Jeffery, 1987;

Turner, 1987; Pressman, 1987) have suggested that several

additional variables could influence the productivity of the

information system development. These variables include:

- variables related to the application (e.g., size,

complexity);

environmental variables (e.g., requirements stability,

interface controls, testing complexity);

attributes of the system development process (e.g.,

planning, support tools, computer hardware support); and

- characteristics of the system developer (e.g., individual

experience and capability, management capability).

A brief review of the literature summarizing factors or

elements that may influence system design productivity was

presented by Turner in 1987. In his review, Turner identified

www.manaraa.com

27

eight basic elements that may influence productivity of system

design process. These elements include: system concepts

(i.e., system need); system boundary (e.g., size and

complexity of the system); division of system development

tasks, system structure; decomposition of the system;

operating sequence; performance measures; and extent of

change. Turner suggested that further research is needed to

verify the respective significance of each of these elements.

Putnum also developed and presented a cost model of

system development productivity in 1987. Putnam's cost model

includes development effort, time, labor-rate, and technology.

The model can be represented by the following equation:

In the above model, the productivity is determined by the

ratio of system size to the development effort (K).

Therefore, if the system developers want to maintain the same

level of productivity, and if they desire to decrease the

development effort for the same size of project, they need to

increase the time for the project.

In 1987, Boehm also developed and presented another cost

model that can be used to predict the system development

K L3/Ck3td4

where:

K
L

Development effort (in person-years)
Lator-rate factor ($/person-year)
State of technology constant
Development time (in years)

www.manaraa.com

28

productivity in terms of efforts and time. Boehm's model can

be mathematically represented by the following equation:

Man-months = 2.4(KDSI)1-05

Elapsed time = 2.5(MM)0*38

where:

KDSI = Thousands of delivered source instructions

MM = Man-months derived from Man-months equation

In Boehm's model, the productivity of system development

is determined by the ratio of the system's size to man-months.

Based on this model, for a given size of the system

development project the smaller the effort, the greater the

productivity of the system development is. Furthermore,

Boehm's model has also incorporated the cost driver factors

which can influence the value of size and effort in the

productivity ratio. These cost drivers include: product

attributes (e.g., database size, and product complexity);

computer attributes (e.g., execution time, and main storage

constraint); personnel attributes (e.g., system analyst

capability, application experience, machine experience, and

programming language experience); and project attributes

(e.g., use of modern practices and tools, and schedule

constraint).

Benbasat and Vessey presented an earlier framework for

investigating the effects of system development factors on

productivity in 1980. In Benbasat and Vessey's framework, the

system development productivity is measured by total time to

www.manaraa.com

29

develop the system. The system development factors in their

framework include:

- organizational operations characteristics (e.g., levels

of user involvement, degree of group interactions,

leadership style, and number of development standards);

computer hardware characteristics (e.g., types of

computer system used, size of computer memory, access

speed);

source languages (e.g., machine languages, natural

languages, and high level of procedural languages);

- developer characteristics (e.g., experience, mathematical

1— aptitude ability, and system development skills);

-'"-'—'"problem characteristics (e.g.*7 -types of problem,

complexity of problems, and types of data required);

software engineering characteristics (e.g.,

methodologies, tools, techniques, and procedures); and

- programming mode characteristics (e.g., batch, and on­

line) .

In summary, the past literature on system development

productivity provides some theoretical models of productivity.

These models suggest several factors that may influence the

productivity of system development process. These factors

include organizational characteristics, development process

characteristics, developer characteristics, user

characteristics, system characteristics, and software

engineering characteristics. However, further research is

needed to investigate the effects of each of these factors on

www.manaraa.com

30

the development productivity under a variety of development

conditions.

Literature on System Development Quality

This section reviews the literature pertaining to system

development quality. Table 6 provides a brief summary of this

literature. A review of selected literature follows.

Gilb (1977) has defined the system design quality as the

conformance of the system design to the predetermined,

explicitly stated functional and performance requirements.

Gilb further proposes the metric concepts to define and

measure quality of the system design. A metric is defined as

a language for describing the set of attributes demanded in

the target system specification (system design). Metrics are

independent of the functional process or structure of the

system. They can be used to describe the quality of the

system without describing the functional details of

subsystems. They allow a system designer to concentrate on

user requirements. The set of metrics includes:

(1) Multidimensional Quality of System Design Metric. It is

a metric that uses the following quality factors to

describe and measure the quality of a system and its

related subsystem: reliability, maintainability,

availability, cost, implementation time and effort, and

relationships among subsystem designs.

www.manaraa.com

31

Table 6

A Summary of Literature Related to System Design Quality

Type of
Reference Literature Major Findings

Gilb
(1977)

Descriptive

Jalote
(1989)

McCall
(1977)

Experimental
(simulation)

Descriptive

Olle, et Descriptive
al. (1986)

Yeh
(1982)

QED
(1989)

Descriptive

Descriptive

Pressman Descriptive
(1987)

The use of Metric Concepts to define and
measure quality of system design:

System Attribute Specification
- Multidimensional Quality of System

Design Matrix (reliability,
"maintainability, availability, cost,
implementation time and effort, speed,
and relationships among system
designs);

- Dataware Metrics (Reliability metric,
Maintainability metric, Accuracy
metric, Flexibility metric, Structure
metric, Performance metrics, Resource
metrics, and Diverse metrics).

Completeness is the most critical factor
for system design quality. Automatic
tools can be used to detect the
incompleteness of system design.

Three aspects of system design quality
include: operational, revision, and
transition characteristics.

Three system design quality factors
include: completeness, correctness, and
consistency.

Three factors affecting the system design
include: communication, complexity, and
evolvability.

Factors affecting the system design may
include: organization, system development,
data processing operations, software, and
data.

Applied system design quality metrics:
Halstead's software science model,
McCabe's complexity model, and Review
Checklist of system design quality.

www.manaraa.com

32

(2) Dataware Metrics. The data description concepts (input

codes, record design, and data bases) are used to

describe the properties of the system design. The

following metrics can be used to describe specific

properties of data and measure the quality of the system

design:

reliability metric (e.g., error detection

probability, error correction probability,

repairability, security);

- maintainability metric (e.g., documentation,

built-in diagnostic aids, automatic recovery

procedures);

- accuracy metric (e.g., degree of freedom from

error);

flexibility metric (e.g., level of logical

complexity, portability, redundancy and integrity);

- structure metric (e.g., redundancy ratio, depth or

number of levels of hierarchy in the system designs,

number of linkages, number of modules);

performance metric (e.g., effectiveness which

comprises of operational reliability, system

readiness, design adequacy; efficiency which is the

ratio of effectiveness to cost); and

- resource metric (e.g., financial ratio, total system

cost, incremental cost, return on investment, and

suggested man-year).

www.manaraa.com

33

These metrics are discussed in detail in Gilb (1973).

The metrics use simple concepts of quality which can be easily

calculated and measured. The reliability metric suggested by

Gilb (1977) can be used in this investigation to define and

measure the quality of system design.

McCall, Richards, and Walters (1977) have proposed a

quality model that can be used to define and measure the

system design quality. This model focuses on three essential

aspects of the design: operational characteristics, revision

characteristics, and transition characteristics. The

operational characteristics include:

- correctness (i.e., does the system design represent

what the user wants?) ; - - --

- reliability (i.e., does the system design have an

accurate representation of the desired system at all

time?);

- efficiency (i.e., will the new system design

represent the system that works with the existing

system?);

- integrity (i.e., is the system design secure?); and

- usability (i.e., can the system design be used?).

The revision characteristic include:

flexibility (i.e., can the system design be changed

and revised?);

testability (i.e.,can we test the system design?);

and

www.manaraa.com

34

maintainability (i.e.,can the system design be

easily documented and maintained?).

The transition characteristics include:

reusability (i.e., can the system design be

reused?);

- portability (i.e., can we transform the system

design to fit with different computer system?); and

- interoperability (i.e., can we integrate the new

system design with other system designs?).

Olle, Hagelstein, MacDonald, Rolland, Sol, Van Asche, and

Verrijn-Stuart (1986) have suggested that the system design

quality can be determined by measuring three factors:

completeness, correctness, and consistency. The completeness

is subjectively judged by the users and developers. The

correctness is defined as the ability to satisfy the given

constraints of the system development, and subjectively

measured by the users and the limitation of the system being

developed. The consistency is defined as the extent to which

the system design does not contain contradictions. The

authors also suggest that formal representation techniques may

be used to detect the contradictions and improve the quality

of the system designs and assist in writing complete system

design.

Jalote (1989) conducted a simulation study to test

whether completeness is the most desirable property for system

design. A VAX system running Unix was used to generate a set

of test cases and test data to detect the incompleteness of

www.manaraa.com

35

system design. It was found in this study that if the system

designs are not complete, the implementation will not be

completed, and the behavior of all of the consequent operation

can not be defined. Jalote has suggested that an automatic

tool (simulation) can be used to detect the incompleteness of

system design.

In summary, previous research and literature related to

system design quality indicate that system design quality

metrics (Gilb, 1973, 1977; McCall, et al. 1977) are available.

However, most of these metrics have not been empirically

tested and validated.

Literature on System Analyst's Experience

This section reviews the literature and previous research

investigating system analyst's expertise and its impact on the

system design quality and productivity. Table 7 presents a

brief summary of the major findings of these research. A

review of selected literature is provided below.

Boehm (1981) has included system analyst experience and

capability in his COCOMO model. Several researchers have

investigated the effect of programmer's experience on the

programmer's productivity (Chrysler, 1978; Lucus & Kaplan,

1976; Thadhani, 1984). Their findings are inconclusive and do

not suggest that programmer experience has a significant

effect on productivity.

www.manaraa.com

36

Table 7

A Summary of Literature Related -to System Analysts' Experience

Reference
Research
Methodology Major Findings

Adelson
(1984)

Adelson &
Soloway
(1985)

Eilot
(1985)

Grant-
Mac kay
(1987)

Guindon &
Curtis
(1988)

Lewis Si
Sier (1983)

Prieto-Diaz Survey
(1987)

Simon
(1981)

Sternberg & Experiment
Davison
(1982)

Vessey
(1985)

Experiment Experts form abstract representation,
novices form concrete representation.
Novices surpass experts when dealing with
concrete detailed-problems.

Experiment Analyst experience in system analysis
and design domain is gained and
accumulated over time with familiar
problem and lost when confronted with
non-familiar problem.

Case study Expert analyst solve the problem from
top-down, consistent, quality approach;
Novice takes bottom up approach,
influenced by analogy.

Case study Expert/novice problem solving behavior:
expertise is lost when working with
unfamiliar tools and problems.

Experiment Identify cognitive process during Curtis
software design and tools required to
support each task.

Experiment Experts surpass novices in diagnostic of
project failure.

Proposed domain analysis technique to
capture domain activities and outcomes in
a set of data flow diagram.

Simulation Experts solve complex problems faster and
more accurately than novices. Indexed
node-link structures is used by experts to
solve problems.

Problem solving depends on individual
intellectual ability, knowledge,
motivation, style and execution process.

Experiment Novices surpass expert programmers in
recalling program when debugging program
and using noncongruent declarative
knowledge.

Vitalari Experiment
(1985)

Identifies core knowledge utilized by
system analyst.

www.manaraa.com

37

Adelson and Soloway (1985) have defined the system

analyst as a problem solving specialist who applies his or her

system development experience to identify, analyze, evaluate

and develop the user requirements and system specification.

The system analyst expertise is defined as the level of

knowledge and skills the system analyst gains and accumulates

while performing the system development tasks over a given

period of time. The system development knowledge can be

gained through traditional classroom education, hands-on

training, or solving real business problems over a period of

time. Normally, it takes years for a system analyst to master

a specific skill. The training instrument, procedures and

time all have effects on the system analyst skills--and the

accumulation of the system development knowledge. Adelson and

Soloway concluded that the highly skilled system analyst can

develop a familiar system better than the one with less skill

and with an unfamiliar system.

Vessey (1985) conducted an experiment to investigate the

differences in the debugging processes of expert and novice

programmers. Sixteen programmers from the State Government

Computer Center, Brisbane, Queensland were the subjects who

participated in the study. The set of instruments used to

differentiate novice and expert programmers in the study

include: peer rating and comprehensive tests (recall tests by

Shneiderman, 1977; question-answer tests; synopses of program

function by Weissman, 1974). Each subject was asked to

reproduce the program either verbatim or a functionally

www.manaraa.com

38

equivalent version. A program was a short 67-line COBOL

program. A verbal protocol method was used to collect and

analyze the data. The results of this study indicate that the

novice programmers surpass expert programmers in recalling the

programs when debugging and using non-congruent declarative

knowledge (detail knowledge).

Kolodner (1983) conducted a simulation study to compare

novices' and experts' reasoning models. A computer simulation

program called "SHRINK" was used to implement the theory of

expertise. The findings of this study indicate that experts

know more about their domain, and are able to apply and use

that knowledge more effectively than novices.

Vitalari (1985) conducted a quasi-experimental study to

describe the content of the system analyst's domain knowledge.

Eighteen experienced system analysts were asked to solve an

accounts receivable problem. A verbal protocol analysis was

used to capture and analyze the data. It was found in this

study that there are six types of knowledge utilized by system

analysts: organization specific knowledge, functional domain

knowledge, application domain knowledge, knowledge of

techniques and methods, core system analysis domain knowledge,

and high-rate knowledge. Vitalari suggests that further

research is needed to investigate and describe system

analysts' problem solving process.

• Guindon and Curtis (1988) conducted an experiment using a

verbal protocol method to describe the cognitive processes of

professional system analysts during a software design process.

www.manaraa.com

39

Three professional designers in the study were selected by

their peers and managers as very skilled and competent. They

were given two hours to produce a design solution that was in

a form and at a level of detail that could be implemented by

programmers. Videotapes were used to capture additional data

which described the strategies and the breakdowns of the

complex task in their problem solving processes. The findings

of the study indicate that there are four main components of

the system analysts's cognitive model of software design. The

four main components are: knowledge sources (i.e., technology

domain, application domain, problem domain, design schemes,

design methods, concepts); design process control (i.e.,

des ign meta-schema., •, methods, heuristic, primary pos it ion);

connected internal representation and processes (i.e., of

problem domain and solution domain); and connected external

representations and processes given available tools and media.

Guindon and Curtis suggest that a set of aids or tools can be

used to support the system analysts' cognitive processes in

the design of a system or software. Examples of these aids or

tools include a library of reusable design schemes, design

journal, special displays of all constraints on the solution

in order to augment working memory, and visual simulation

tools.

In summary, review of the literature related to system

analyst1s expertise has led us to conclude that the system

analyst's expertise has a significant impact on the output of

the system design process. However, there are no effective

www.manaraa.com

40

instruments currently available which can help in measuring

system analyst's expertise and performance.

Literature on System Complexity

Complexity in system development process can be discussed

at two levels: software/program complexity and system

complexity. Table 8 summarizes software/program complexity

and system complexity measures found in the current

literature.

Several measures for program complexity have been

proposed in the literature. Examples are McCabe's Cyclomatic

Complexity Metric (McCabe and Butler, 1989); Halstead's

Programming Effort Metric (Halstead, 1977); Albrecht's

Function Point Metric (Albrecht, 1979); and Oviedo's Data Flow

Complexity Metric (Ovideo, 1980).

McCabe and Butler (1989) proposed the cyclomatic

complexity metric as a way to measure program complexity.

This can be determined by the following equation:

Software and program complexity

v e - n + p

where:

v
e

Complexity of the program
Number of edges in a program flow graph

www.manaraa.com

41

Table S

Software. Program, and System Complexity Measures

Reference Complexity Measure

McCabe Program Complexity = Number of nodes + Number of
(1976) - connections between nodes in the

program

Halsted "Program Complexity =' f(Number of operands, Number of
(1980) operators in the software)

Oviedo Program Complexity = Total number of data flow in the
(1980) diagrams

Albrecht Function Point:
(1979) Size of Program = (Information processing size) x

(Technical complexity factor) x
(Environmental factors)

Langefors System Complexity = , f(Number of components, Number of
(1973) ••• — interactions among components)

Welke System Complexity = f(Cardinality and Variety of
(1983) IS/DSS)

Simon System Complexity = f(Number of parts in the system,
(1981) Number of interaction of those

parts)

Wright System Complexity = Inverse proportion of Time
(1974) pressure

McCabe & System Complexity = Summation of individual components
Butler design complexity in a structure
(1989) " chart

Konsynski Structural Complexity = f((R1,R2,R3,R4) and (P1,P2,P3))
(1984) where Rl, R2, R3, R4 denote each

realm of system life cycle, and P
denotes the properties of
complexity in each realm (PI =
volume, P2 = distribution, P3 =
location)

www.manaraa.com

42

n = Number of nodes (vertices)
p = Number of connected components

Based on the mathematical properties of this model,

McCabe defines the complexity of the program as the maximum

number of linearly independent paths through the program.

Halsted (1977) has used the program volume and program

level to determine the programming effort. Then, the

programming effort can be used to identify the degree of

program complexity. The programming effort can be determined

by the following equation:

V = (n2 log2n1 + n2 log2n2) . log2(n1+n2)

where:

V = Programming effort (a measure of software complexity)
nl = Number of distinct operators that appear in a program
n2 = Number of distinct operands that appear in a program
Nl = Total number of operator occurrences
N2 = total number of operand occurrences

Halsted's programming effort model can be applied to

measure the software complexity from the program volume point

of view. However, it may not be applicable to measure the

software structural (level) complexity.

Oviedo (1980) has proposed a data flow complexity model

for measuring the program complexity. Data flow complexity of

the program can be calculated by the following equation:

s
DF = £ DF±

i=1

where:

www.manaraa.com

43

DF = Data flow complexity of a program body
s = Set of blocks in the program body

Oviedo's data flow complexity model can be applied to

measure the complexity of the data flow diagram of the system

specification.

Albrecht (1979) has suggested that the function point

metric can be used to measure the size of programs and their

aissociated programming effort. The size of the program is

determined by the product of three factors: information

processing size (e.g.,inputs, output, files, and inquiry);

technical complexity factor (i.e., estimation of degree of

influence of fourteen components of general application

characteristics); and environmental factors (e.g.,risk, people

skill, methods, tools, and language) (Symonds, 1988).

However, only the first two factors are used to estimate the

size of the program in the function point method. The third

factor has not been taken into account in the correct version

of function points as defined by Albrecht (1979). Further

research is needed to describe and include the measurement of

the environmental factors into the function point method. The

function point method, then, could be used to measure the

complexity of the system.

System complexity

Langefors (1973) and Simon (1981) have suggested that the

system complexity is the association of the number of

www.manaraa.com

44

components in the system and the number of interactions among

components in the system. The more components and

interactions in the systems, the more complex the system

appears.

Wright (1974), however, has argued that time and

constraint are other elements that make up system complexity.

By linking Langefors's and Simon's system complexity concepts

(Langefors, 1973; Simon, 1981) and Wright's time and

constraint elements, the comprehensive definition of system

complexity becomes the association of the number of components

in the system (e.g., processes, data flows, decisions,

constraints) and their interactions within a given time frame.

Therefore, the greater the number of processes and interfaces

within a short period of time and high business pressure, the

more complex the system.

Welke (1983) has suggested that system complexity can be

measured by its cardinality (number of instances) and the

variety of the information system development support systems.

Konsynski (1984) has introduced the structural complexity

metric for measuring the complexity of system designs and

estimating complexity between system development life cycle

phases. The structural complexity metric partitions the

system life cycle into four sets of complexity realms denoted

by Rl, R2, R3, and R4. The structural complexity metric can

be represented by the following functions: P = f(Rl, R2, R3,

R4). Rl deals with the complexity of the requirement

specifications in a complete and consistent logical design.

www.manaraa.com

45

R2 involves the complexity of designing, constructing, and

implementing a physical design which is consistent with the

logical design. R3 is concerned with the complexity of the

overall operating efficiency of the target system. R4 deals

with the flexibility in the system implementation.

The complexity measures in each realm are denoted by P,

where PI is equal to volume complexity (e.g., size of entity),

P2 is equal to distribution complexity (e.g., interrelated-

ness), and P3 is equal to location complexity (e.g.,

intermodular interfaces). The complexity measures within a

given realm can be used to project the complexity and

productivity of. realm activities. . ..

•l' 'n ?>r.-McGabe-«and .-Butler (1989) have developed a system design-

complexity metric based upon his earlier work (McCabe, 1976).

The system design complexity (S0) of a design module M is

defined as:

McCabe1s System Design Complexity Metric can be used to

estimate the time and effort for developing the system design

specification. An automated tool for computing the system

design complexity has been developed by McCabe and Associates.

where:

i
G
D

System design complexity
Cyclomatic complexity of each graph
Module number
Flow graph
Set of descendants of M modules

www.manaraa.com

46

McCabe's automated tool is now available and is being applied

on several projects.

In summary, when a system becomes very large and

integrated, system complexity can lead to severe coding and

maintenance problems. Many researchers have attempted to

develop techniques and mechanisms for estimating the

complexity of a system. Further research is needed to verify

these techniques and associate them with automated tools.

Summary

This chapter has reviewed previous research and

literature relevant to this study. The review covers the

following areas: Computer-Aided Software Engineering (CASE),

system development productivity, system development quality,

system analyst's expertise, and system complexity.

In this research, an attempt is made to integrate the

research discussed above into a framework to determine and

analyze the effects of certain system development variables on

system development productivity and quality. Specifically,

this research builds upon the work of Norman and Nunamaker

(1989) on CASE; Vitalari (1985) on system analyst knowledge

base; Fraser, Kumar, and Vaishnavi (1991) on syntactic

verification of the specifications; Langefors (1973) on system

complexity; Benbasat and Vessey (1980) on system development

productivity; and Gilb (1977) and Miller (1989) on system

development quality.

www.manaraa.com

CHAPTER III

RESEARCH MODEL

The purpose of this chapter is to present the research

framework, research model, research questions and hypotheses

which form the basis for this study.

Research Framework:

Research in MIS can be better understood when viewed in

the context of a generic research framework such as the one

proposed by Ives, Hamilton, and Davis (1980). Their framework

identifies three general classes of variables that may affect

the performance of a computer-based information system in an

organization. These three classes of variables, shown in

Figure 1, are environmental variables (shown as rectangles),

process variables (shown as ellipses), and information system

variable (shown as a circle).

The environmental variables include the external

environment, the organizational environment, and the

information system environment. The external environment

variable refers to eight major factors that impact the

performance of organization. These factors are legal, social,

political, cultural, economic, educational, resource, and

industry/trade factors. The case of organizational

47

www.manaraa.com

THE EXTERNAL ENVIRONMENT

USER

ENVIRONMENT

IS
DEVELOPMENT
ENVIRONMENT

THE
DEVELOPMENT
. PROCESS .

INFORMATION

V SYSTEM J

THE
OPERATION
PROCESS

OPERATIONS
ENVIRONMENT

Source: Ives, B., Hamilton, S., & Davis, G. B. (1980). "A Framework for
Research in Computer-based Management Information
Systems." Management Science. 26(9). p. 917.

Figure 1. General research framework

www.manaraa.com

49

environment variables refer to the organization's goals,

tasks, structure, volatility, and management philosophy or

style. Finally, the information system environment is further

subdivided into environmental variables, process variables,

and information system variable. These variables are

described below.

The environmental variables within the information system

environment consist of the user environment, the IS

development environment, and the IS operations environment.

These three variables determine the type of IS to be

developed, the development methodologies and personnel, and

the critical resources required for the operation of

information systems.

The process variables consist of three sub-variables: the

development process, the operational process, and the user

process. The development process, by selection and

application of critical development resources (within

environmental constraints), produces the information system.

The operations process is the physical operation of the IS and

is primarily a function of the operations resource. The user

process, focusses on the usage of IS by the primary user, is

usually measured by task accomplishment leading to an effect

on the productivity and quality of decisions.

Finally, the information system variable consists of

three classes of variables: IS content, presentation form, and

time of presentation. The IS content refers to data and

decision models available in the IS. The presentation form

www.manaraa.com

50

refers to method by which the information is presented to

users. The time of presentation refers to reporting

intervals, processing delays, and on-line or off-line data

storage.

Research Model

.,The Ives, Hamilton, and Davis's model identifies a large

set of variables for MIS research. This research focuses on a

subset.of these variables: the IS development environment, the

IS characteristics, and the IS development process. Figure 2

graphically identifies the focus of this study.

The-purpose of this study is to investigate the effect of

IS development environment on IS development process and its

product, i.e.,the resulting system. The IS development

environment is characterized by the tools,used in IS

development process (traditional versus automated tools), the

complexity of the resulting system being developed (simple

versus complex), and the experience of system analyst in IS

development process (less and more experience). In this

study, the performance of IS development process is measured

by its productivity and quality of its product. A model

summarizing these variables is presented in Figure 3.

In summary, the abbreviated research model, presented in

Figure 3, includes three components of the IS development

environment (system design tools, system complexity, and

www.manaraa.com

THE EXTERNAL ENVIRONMENT

THE ORGANIZATIONAL ENVIRONMENT

USER

ENVIRONMENT

/ T H E U S E R \

PROCESS)

IS
DEVELOPMENT
ENVIRONMENT

(DEVELOPMENT) (INFORMATION
V^PflOCSSS /̂ V SYSTEMJ

IS

OPERATIONS
ENVIRONMENT

THE
(OPERATION)
V^PROCESS ̂

Figure 2. Specific research framework

www.manaraa.com

52

system analyst's experience). The outcome variables (the

development process and the resulting IS) are represented as

productivity of the syntactic verification tasks and syntactic

quality of the resulting system design specifications.

Model Variables

Independent Variables

The research model in Figure 3 identifies three

independent variables. A brief description of each of these

variables is provided below. A detailed definition,

operation and measurement of these variables is discussed in

Chapter IV.

The first independent variable represents the system

development tools used in the verification process. The model

examines the use of two types of system development tools:

paper and pencil (traditional tool) and computer-assisted tool

(CASE tool).

The second independent variable in the model is the

complexity of the system under development. For the purpose

of this study, system complexity is operationally defined as

the cardinality (number of instances) of system components

(Langefors, 1973; Welke, 1983). Two levels of system

complexity are examined: simple and complex systems. For a

simple system, the number of data flow diagrams, data

www.manaraa.com

53

INDEPENDENT VARIABLES DEPENDENT VARIABLES

>-

>-

•>J

SYSTEM COMPLEXITY
- Simple
- Complex

SYNTACTICAL QUALITY
OF THE DESIGN
SPECIFICATIONS

PRODUCTIVITY OF
SYNTACTIC VERIFICATION

TASKS

SYSTEM DEVELOPMENT
TOOLS:
- Traditional
- CASE

SYSTEM ANALYSTS'
EXPERIENCE:
- Less
- More

Figure 3. Research model

www.manaraa.com

54

dictionary entries, and processes is much smaller than that in

a complex one.

The third independent variable in the research model is

the experience of system analyst performing the syntactic

verification tasks. Two levels of system analyst's experience

are considered: less experienced and more experienced system

analysts. Less experienced analysts are those analysts who

have lesser experience than more experienced analysts in terms

of the number of years which they have been working as

professional system analysts and the number of system design

projects which they have completed using CASE tools.

Dependent Variables

The research model has two dependent variables:

syntactical quality of the system design specifications, and

productivity of the syntactic verification tasks. Syntactic

verification tasks are defined as verification of internal

consistency, syntactic correctness and syntactic completeness

of the system design specifications (Fraser, Kumar, &

Vaishnavi, 1991). Syntactical quality is defined as the

degree to which the system design specifications are

internally consistent and syntactically correct and complete.

Productivity of the syntactic verification tasks is defined as

the number of syntactical errors found and correctly changed

per unit of time. Specific measures of syntactical quality

and productivity in this study are discussed in Chapter IV.

www.manaraa.com

Research Questions

55

The purpose of this research is to investigate the

effects of system development tools (traditional versus CASE

tools), system complexity (simple versus complex) and system

analyst's experience (less versus more) on syntactical quality

of the system design specifications and productivity of the

syntactic verification tasks. Specifically, this research

addresses three research questions.

Research Question 1:

Do the use of CASE tools, system complexity, and system

analysts1 experience have significant effect on

syntactical quality of the system design specifications

and productivity of the syntactical verification tasks?

Various MIS researchers (McCabe & Butler, 1989; Norman &

Nunamaker, 1989; Pressman, 1987; Benbasat & Vessey, 1980)

suggested that types of system development tools, levels of

system complexity, and levels of system analyst's experience

influence quality and productivity of information system

development. However, no research has been conducted to

validate whether or not these factors have significant effect

on syntactical quality of the system design specifications and

productivity of the syntactical verification tasks. The first

research question, therefore, is concerned with the testing of

www.manaraa.com

56

significance of effects of these factors. We hypothesize that

system development tools, system complexity, and system

analysts' experience have significant effects, both
)

individually and interactively, on syntactical quality of the

system design specifications and productivity of the

syntactical verification tasks.

Research Question 2: ' r

Does one particular system development tool always

outperform the other tool in terms of syntactical quality

of the system design specifications and productivity of

€he syntactic: verification tasks?--'If so, which tool is

better? If not, what is the relative performance of the

two tools for each combination of system complexity and

system analysts' experience levels?

Many companies selling CASE products claim that users of

their products have achieved substantial improvements on their

system development quality and productivity. They report that

CASE tools are more effective than traditional tools under all

possible use environments. Various MIS practitioners and

researchers (Chikofsky, 1988; Marcus & Nelson, 1989; Norman &

Nunamaker, 1989; Orlikowski, 1989; Necco, Tsai, & Holgenson,

1989) suggest that the use of CASE tools can enforce system

engineering standards and reduce time and cost required for

developing a system. Hence, CASE tools are being considered

www.manaraa.com

57

as panacea tool for improving system development quality and

productivity. The second research question, therefore, is

concerned with the evaluation of relative performance of

traditional and CASE tools. We hypothesize that the use of

CASE tools do not outperform the use of traditional tools for

all levels of system complexity and system analyst's

experience; it is likely that different levels of system

complexity and system analyst's experience affect the relative

performance of the two tools. If the experimental results

confirm this hypothesis, further analysis will be performed to

examine the performance difference between the two tools under

each combination of system complexity and system analyst's

experience levels. This would lead us to the third research

question stated below.

Research Question 3:

How do different levels of system complexity and system

analyst's experience affect performance of traditional

and CASE tools in terms of syntactical quality of the

system design specifications and productivity of the

syntactic verification tasks?

The third research question is, therefore, concerned with

the examination of effects of different levels of system

complexity and system analyst's experience on the performance

of traditional and CASE tools. To investigate this research

www.manaraa.com

58

question, additional data analyses were performed to identify

changes in quality and productivity of the two tools with

respect to changes in system complexity and system analysts'

experience levels.

Summary

.This chapter presents the research framework, model,

questions and hypotheses to be tested in this study. The

research model identifies three independent and two dependent

variables. The independent variables consist of types of

system development tools (traditional versus CASE tools) used

by system analysts to perform the syntactic verification

tasks, levels of system complexity (simple versus complex

systems) whose specifications are to be verified, and levels

of experience of system analyst (less versus more experienced)

who performs syntactic verification tasks. The dependent

variables consist of syntactical quality of the system design

specifications and productivity of the syntactic verification

tasks. The three research issues investigated in this study

are: the significance of effects of system development tools,

system complexity, and system analysts' experience on

syntactical quality of the system design specifications and

productivity of the syntactic verification tasks; the relative

performance of traditional and CASE tools; and the effects of

system complexity and system analyst's experience on

performance of the two system development tools.

www.manaraa.com

CHAPTER IV

RESEARCH METHODOLOGY

The purpose of this chapter is to describe the research

methodology used in this study and to provide a description of

the experiment design, subjects, tasks and procedures. This

chapter also describes the operationalization of the research

variables and their measurements. This description is

followed by a discussion of the data collection and the

statistical analysis techniques used to analyze experimental

data.

Selection of the Research Methodology

A controlled laboratory experiment was used as the

research methodology in this study. This particular research

method was chosen because it allows the researcher to

manipulate the variables of interest and control other

variables which are not of main interest in the study.

Laboratory experiments are powerful research methods that

provide the researcher with the capability to discover and

measure cause-and-effect relationships among variables. They

also provide very high level of internal validity (Stone,

1978; Fromkin & Streufert, 1983).

59

www.manaraa.com

60

Laboratory experiments, however, have at least one major

drawback. They may suffer from a lack of external validity if

unrealistic subjects and tasks are used in the experiment. To

remedy against this potential problem, the subjects used in

this study include both non-professional system analysts

(students who are enrolled in an advanced system analysis and

design courses in business schools) and professional system

analysts (system analysts who have been working in industry as

system analysts for at least five years). In addition, the

task to be examined in this study is syntactic verification

task which is a necessary task for ensuring the quality of

system requirement specifications.

Experimental Design

A 23 factorial experimental design with three independent

variables is used in this study (see Figure 4). The first

"independent variable is the type of system development tools

used. This study investigates the performance of the use of

two different types of system development tools: traditional

paper-pencil based tools versus CASE tools. System complexity

is the second independent variable in the experiment. This

variable has two levels: simple versus complex systems.

Finally, system analyst's experience is the third independent

variable. This variable also has two levels: less experienced

system analysts versus more experienced system analysts. Thus

www.manaraa.com

61

Less Complex
System

More Complex
System

Less Experienced

System Analyst

Using Traditional
Tools

Using Traditional
Tools Less Experienced

System Analyst
Using CASE
Tools

Using CASE
Tools

More Experienced

System Analyst

Using Traditional
Tools

Using Traditional
Tools More Experienced

System Analyst
Using CASE
Tools

Using CASE
Tools

Figure 4. A schematic representation of experimental design

www.manaraa.com

62

the experimental design has 2 x 2 x 2 or 8 cells (treatments).

Following the recommendation of Wasserman and Kutner (1985)

for each cell, four replications were conducted. Thus, the

sample size used in this study is 8 x 4 or 32 subjects.

Experimental Subjects

The subjects participating in this research consist of

both less and more experienced system analysts. Table 9

summarizes the qualification requirements for these two group

of subjects. The descriptions of and recruiting procedures

for the subjects are presented below.

Less Experienced System Analyst Subjects

Less experienced system analysts are those analysts who

have knowledge of both system analysis and design method and

general business functions, but lack real-world work

experiences. In this study, less experienced system analyst

subjects were recruited from system analysis and design

students at Georgia State University (Atlanta, Georgia) and

Kennessaw State College (Kennessaw, Georgia). To qualify as

less experienced system analyst subjects, the students were

required to have the following qualifications.

(1) Knowledge of structured analysis and design methods and

techniques.

www.manaraa.com

63

Table 9

A Summary of the Qualification Recfuirements for Less and More
Experienced System Analyst Subjects

Qualification
Requirements

Less
Experienced
System Analysts

More
Experienced
System Analysts

Knowledge of structured
analysis methods and
techniques *

Yes Yes

Knowledge of general
business functions **

Yes Yes

Knowledge of CASE
tools ***

Representative
CASE tool

Representative
CASE tool

Minimum of five years
of work experience as
system analyst, plus has
completed at least four
system analysis and
design projects using the
structured analysis
method, and one project
using CASE tools

No Yes

Note: * Knowledge of data flow diagram, process description
and data dictionary

** Knowledge of accounting, finance, marketing, and
production and inventory management

*** Knowledge of a representative CASE tool used in
this study

www.manaraa.com

64

(2) Knowledge of general business functions (e.g.,

accounting, finance, marketing, and production and

inventory management).

(3) Knowledge of the representative CASE tool. "The

representative CASE tool" refers to as the CASE tool used

in the experiment. This tool has been available

commercially in the market since 1984. The less

experienced subjects must have completed the CASE tool

training and developed at least one system specification

using the CASE tool.

(4) No actual work experienced as system analyst in the real

business or non-profit organization.

The recruiting procedure for less experienced system

analyst subjects included the following steps:

Step 1: The researcher contacted the instructors who taught

the advanced system analysis and design course at

Georgia State University and Kennessaw College.

Care was taken to ensure that the instructors

understood the nature and objective of the study and

the contributions of the study to MIS research and

practices.

Step 2: The students in the classes, whose instructors

agreed to allow them to participate in the

experiments, were requested to fill out a Subject

Background Questionnaire (see Appendix A). The data

from this questionnaire were used to determine if

student met the minimum qualification requirements

www.manaraa.com

65

for less experienced system analyst subjects in this

study.

Step 3: Students who met the minimum qualification

requirements for less experienced system analysts

were invited to participate in the experiment. They

were told up front that there was no financial

compensation offered. However, they were motivated

to participate in the study by their interest in

system analysis and design research and education.

More experienced system analyst subjects

More experienced system analysts are those who have both

the knowledge and skills of system analysis and design, and

work experience as system analysts in business organizations.

To qualify as more experienced system analyst subjects for

this study, the analysts were required to have the following

qualifications:

(1) Knowledge of structured analysis and design methods and

techniques.

(2) Knowledge of general business functions (e.g.,

accounting, finance, marketing, production and inventory

management).

(3) Knowledge of the representative CASE tool.

(4) A minimum of five years of work experience as system

analysts or system designers. During these five years,

they must have completed at least four system analysis

www.manaraa.com

and design projects using the structured analysis methods

and at least one project using the representative CASE

tool.

The recruiting procedure for more experienced system

analyst subjects included the following steps:

Step 1: The researcher contacted MIS or system development

managers of medium and large corporations located in

the Atlanta, Sacramento, and San Francisco areas.

Care was taken to ensure that the managers

understood the nature and objective of the study,

and the contributions of the study to MIS research

and practices. They were then asked to refer the

researcher to individual analysts who would agree to

participate in the study.

Step 2: Each potential subject was contacted and a Subject

Background Questionnaire (see Appendix A) was

administered by phone during an initial screening

call by the researcher. For each subject, the level

of experience and knowledge of the structured

analysis methods and techniques, general business

functions, and CASE tools were determined.

Step 3: Only subjects who met the minimum qualification

requirements for more experienced system analyst

subjects stated in Table 9 were invited to

participate in the experiments. As with the less

experienced system analyst subjects, the qualified

subjects were told up front that there was no

www.manaraa.com

67

financial compensation for participating in the

experiment. However, they were motivated to

participate in the study by their interest in system

analysis and design research and education.

Experimental Tasks

As a part of the experimental procedure, subjects were

asked to perform syntactic verification and correction of

provided system specifications. These tasks involved

determining if the design specifications were internally

consistent (e.g., level balancing,.numbering, and naming);

correct (e.g.., . valid data. flow.directions, process names and

numbers, file names, and external entity names); and

syntactically complete (e.g., no missing element in the data

flow diagrams, process descriptions, and data dictionary).

The verification task included both diagnosis and correction

of the system specification. The verification for semantic

completeness and correctness of the design specifications, in

the sense that all of the user's requirements are complete and

correct, is not included in this study.

In the experiment, subjects were provided with a system

specification problem case to diagnose and correct. The case

provides the subjects with company background information and

an initial set of system specifications in the form of data

flow diagrams, process descriptions, and data dictionary

entries. Subjects were asked to perform syntactic

www.manaraa.com

68

verification of the system design specifications using the

rules of structured analysis methodology and the tool (either

traditional paper-pencil based tool or CASE tool) given to

them. In the process of doing so, they were asked to diagnose

the initial design specifications and make all necessary

corrections for internal consistency, correctness, and

syntactical completeness.

Experimental Procedures

The experiment was administered individually to each

subject (i.e., there was only one subject in each experimental

session). Figure 5 outlines the major steps followed in each

experimental session. These steps are described in detail as

follows:

Step 1: The subject was briefed about the experimental tasks

to be performed and the procedures to be followed

during the experiment.

Step 2: The subject was requested to fill out the consent

form (Appendix B). The purpose of the consent form

was to secure subject's cooperation and to request

the subject to keep the content of the experiment

confidential.

Step 3: A short pilot session using a small example system

specification problem (different from the ones used

in the actual experiment) was given to each subject

to acquaint him/her with the experimental tasks,

www.manaraa.com

1. Experimenter briefs
subject on experimental
tasks and procedures

1 1
•

2. Subject fills out consent
form

J

3. Subject undergoes a pilot
session

7

4. Experimenter assigns
subject randomly to a
system design problem case
and system design tools

1

5. Subject performs
experimental tasks

-

1

6. Experimenter debriefs
subj ect

Figure 5. Experimental procedures

www.manaraa.com

70

procedures, and the system design tools to be used

in his/her experiment.

Step 4: The subject was randomly assigned to one of the two

problem cases (either a less complex problem case or

a more complex problem case) and one of the two

types of system design tools (either traditional

paper-pencil based tool or CASE tool) to be used in

the experiment.

Step 5: The subject performed the experimental tasks. The

tasks required 2 to 4 hours to complete. The

researcher maintained minimum contact with the

subject in order to minimize distortion to the

experimental data. When the subject decided to stop

working on the problem, he or she was requested to

turn in all revised data flow diagrams, process

descriptions, and data dictionary entries modified

and/or produced during the experiment. During the

experiment the subject was video taped such that the

tape included both the subject as well as an image

of working pages (or computer screens) used by the

subject. The video-tape provided the "video-

protocol" of the way the analyst performed the

verification task.

Step 6: Upon the completion of the experiment, the subject

was debriefed. The researcher requested the subject

to complete a post-experimental questionnaire and

explained the nature and contribution of the study.

www.manaraa.com

71

Experimental Variables

This study has three independent variables and two

dependent variables (see Table 10). The three independent

variables include the system development tools, system

complexity, and system analyst's experience. The two

dependent variables in the study are syntactical quality of

the design specifications and productivity of the syntactic

verification tasks. These variables are described in detail

as follows.

System Development Tools Variable and Its Levels

The first independent variable is the type of system

development tools used to perform the syntactic verification

tasks. This study investigates two types of system

development tools: traditional and computer-assisted system

development tools. Paper and pencil represent the traditional

system development tools. The representative CASE tool as it

is well-known and wide use among professional system analysts

in real world organizations and educational institutions,

represents the computer-assisted tool.

System Complexity Variable and Its Levels

The second independent variable is the level of system

complexity. System complexity is defined as the cardinality

www.manaraa.com

72

Table 10

Experimental Variables and Their Levels

Variable Level Description/Measurement

Independent variables;

l.~System development tools 1

2

2. System complexity 1
2

3. System analysts1 experience 1

2

Traditional tool
(paper and pencil)

Computer-assisted tool
(CASE)

Simple system
Complex system

Less experienced system
analysts

More experienced system
analysts

Dependent variables:

1. Syntactical Quality Index
E.

Q =

where:
Q =
Efc =

fc

Es =

Syntactic Quality Index
Number of errors found

and correctly changed
Total Number of seeded

errors

. . Efc
2. Syntactical Productivity Index P = —

T
where:
P = Productivity Index
Efc = Number of errors found

and correctly changed
T = Total time on the tasks

www.manaraa.com

(number of instances) of system components (Langefors, 1973;

Welke, 1983). This study examines two levels of system

complexity: simple and complex systems. Two system

specification cases with different levels of complexity were

specifically developed for use in this study. The first case,

representing the simple system, involved the specification of

a billing system for an utility company. The second case,

representing the complex system, involved the specification of

an inventory control system for a wholesale company.

Billing and inventory control systems were used as the

case problems in this study as a majority of the MIS/CIS

students (in business school) and professional system analysts

are usually familiar with billing and inventory control

applications. In the subject screening process, the

background questionnaire was used to check each potential

subject whether he/she had experience with billing and

inventory control systems. Only those subjects who had

previous experience with at least one of the two application

areas were selected to participate in the experiment.

Based on definitions presented earlier from the work of

Langefors and Welke, the two cases used in the experiment were

designed to have different levels of system complexity in

terms of the number of data flow diagrams, the number of

levels in the data flow diagrams, the number of processes,

external entities, data storage elements, data flows, and the

number of data dictionary entries. Table 11 provides a

comparison of the system complexity metrics associated with

www.manaraa.com

74

Table 11

Comparison of the System Complexity of the Billing System
Problem Ŝimpler! Case and the Inventory Control System
Problem (Complex) Case

Dimension
Billing8
System

Inventory13
Control
System

Number of data flow diagrams 3 10

Number of levels of data flow diagrams 3 4

Number of processes 10 34

Number of external entities 2 4

Number of data storage 2 3

Number of data flows 24 90

Number of data dictionary entries 24 42

Total 68 187

A billing system represents a simple system case.
An inventory control system represents a complex system
case.

www.manaraa.com

75

these two cases. As shown in this table, the billing system

case (i.e., the simple system) has fewer numbers of data flow

diagrams, levels of data flow diagrams, processes, external

entities, data storage, and data flows than the inventory

control system case (i.e., the complex system). Therefore,

the billing system represents a less complex system whereas

the inventory control system represents a more complex system.

Appendices C and D provide complete descriptions of the

billing system and the inventory control system cases,

respectively. In each case, the description of the company

background, the experimental tasks and instructions, and the

initial system specifications in forms of data flow diagram,

process description, and data dictionary are provided on paper

as well as on a diskette to be used with the CASE tool.

System Analyst's Experience Variable and Its Levels

The third independent variable represents the level of

system analysts' experience. This study examines two levels

of the system analysts' experience: less experienced system

analysts and more experienced system analysts. Both less and

more experienced system analysts have knowledge of structured

analysis and design methods and techniques (e.g, data flow

diagram, process description and data dictionary); general

business functions (e.g., accounting, finance, marketing, and

production and inventory management); and the representative

www.manaraa.com

76

CASE tool. The major difference between these two groups of

subjects is that the more experienced system analysts have

considerably more "real-world" work experience than the less

experienced system analysts. The potential subjects were

asked to complete a background questionnaire. The data from

this questionnaire was used to determine if each potential

subject met the pre-established qualification requirements.

Syntactical Quality Measure

Syntactical quality of the design specifications is one

of the two dependent variables. The syntactical quality is

defined as the degree to 'which the design specifications are

internally consistent, correct, and syntactically complete

(Fraser, Kumar, & Vaishnavi, 1991). The experimental approach

adopted in this study is to provide subjects with the initial

specifications in which various types of syntactical errors

(i.e., internal inconsistency, incorrectness, and

incompleteness errors) have been intentionally embedded by the

researcher. Table 12 presents a list of the types of errors

embedded in the initial design specifications. Appendices E

and F show the locations and descriptions of seeded errors in

the design specifications of billing system (simple system)

and inventory control system (complex system), respectively.

In these two appendices, suggested corrections for these

seeded errors are also provided. The subjects were asked to

diagnose the specification and make all necessary corrections.

www.manaraa.com

77

Table 12

A List of the Categories and Types of Seeded Errors

Category of
Errors Type of Errors

Incorrectness

Incompleteness

Internal
Inconsistency

1. Incorrect level numbering of a data flow
diagram

2. Incorrect display of file at the level
where it is first used

3. Incorrect display of data flow(s) at the
level where it is not first used

4. Incorrect balance between parent and child
data flows into and out of the parent
bubbles

5. Incorrect balance between parent and child
data flows into and out of the child
diagram

6. Double-headed arrow in a data flow between
processes

7. Double-headed arrow in a data flow between
process and external entity

8. Incorrect naming of data flows into and
out of simple

9. Incorrect process number

10. Missing a data flow
11. Missing data flow name
12. Missing arrow head in a data flow
13. Missing data flow definition in data

dictionary entry
14. Missing a data flow diagram
15. Missing a process
16. Missing process number
17. Missing process name
18. Missing process description
19. Missing a file
20. Missing a file name
21. Missing file definition in Data dictionary
22. Missing an external entity
23. Missing an external entity name
24. Missing process definition in Data

Dictionary

25. Inconsistent process number
26. Inconsistent process name
27. Inconsistent file name
28. Inconsistent external entity name
29. Inconsistent data flow name

www.manaraa.com

78

Since the total number of errors seeded in the design

specifications was known to the researcher (but not to the

subjects), the syntactical quality of final specification can

be measured as a percentage of the number of seeded errors

found and correctly changed by the subject. In this study,

the syntactical quality measure is referred to as "syntactical

quality index (Q)." The mathematical equation for computing

the syntactic quality index is shown below.

E*=
Q = x 100 (1)

Es

where:

Q = Syntactical quality index (as percentage);
Eg = Total number of seeded errors; and
Efc = Number of seeded errors found and correctly

changed.

The range of syntactical quality index (Q) computed by

equation (1) must therefore be between 0 and 100 percent.

Thus, the higher the Q value, the higher the syntactical

quality of the resulting system specification.

Productivity Measure

Productivity of syntactic verification tasks is the

second dependent variable in this study. Productivity in its

broadest sense is defined as the ratio of output to input.

In the context of this study, the "output" represents the

amount of output generated from the syntactic verification

www.manaraa.com

79

tasks performed by the system analyst. The amount of this

output was measured by the number of errors in the design

specifications found and correctly changed. It should be

noted that the errors which the system analyst detects but

fails to correct are not considered as output. The "input" in

the productivity measure represents the amount of resources

spent in generating the output (performing the syntactic

verifications tasks). Although various types of resources may

be considered as input (e.g., capital, material, personnel,

and energy), only the amount of time the system analyst spent

on performing the syntactic verification tasks was considered

in this study. Therefore, the productivity of syntactic

verification tasks is measured as the number of errors found

and correctly changed per unit of system analyst time. In

this study, this productivity measure is referred to as

"syntactical productivity index (P)." The mathematical

equation for computing the productivity index is as follows:

P (2)
T

where:

T

P
E fc

Syntactic productivity index;
Number of errors found and correctly
changed; and
Total time spent on the tasks.

It should be noted that in equation (2) the higher the P

value, the higher the productivity of the syntactic

verification tasks.

www.manaraa.com

Data Collection Procedures

80

In order to measure syntactical quality and productivity,

the primary data collected from the experiments include: the

number of errors found in the design specifications and

correctly changed, and the total time spent in performing the

syntactic verification tasks. In addition to the primary

experimental data, subjects* attitude toward system

development tools and the subjects' task protocol, i.e., the

way in which they performed the design specification

verification tasks, were also collected.

The following steps were used to collect these data.

Step 1: When the subject started working on the system

design problem case, the start time of the

experiment was recorded by the experimenter.

Step 2: A video camera was used to visually and audibly

record each experimental session in its entirety.

Step 3: When the subject decided to stop working on the

problem, the finish time of the experiment was

recorded by the experimenter. The revised data flow

diagrams, process descriptions, and data dictionary

produced by the subject during the experiment were

collected for further analysis.

Step 4: Finally, the researcher conducted a post-

experimental structured interview with each of the

subjects. Appendix I shows an example of the post-

experimental structured interview form.

www.manaraa.com

81

Statistical Analysis Methods

The analyses of the experimental data are organized into

four parts. The first part tests the significance of the

effects of system development tools, system complexity, and

system analysts' experience on syntactical quality of the

design specifications and productivity of the syntactic

verification tasks. A Multivariate Analysis of Variance

(MANOVA) method was used to examine the main and interaction

effects of the independent variables (i.e., system development

tools, system complexity, and system analysts' experience) on

the set of dependent variables (i.e., syntactical quality and

productivity). The MANOVA method can identify whether or not

the centroids (vectors) of the dependent variables are equal

across levels of the independent variables. To facilitate the

interpretation of the MANOVA results, a series of Univariate

Analysis of Variance (ANOVA) was also performed on each

dependent variable.

The second part of the data analysis evaluated the

relative performance of traditional and CASE tools with

respect to syntactical quality of the specifications and

productivity of the syntactic verification tasks. A pair-wise

t-test was used to test for differences between the

performance of the two system development tools for each

combination of system complexity and system analysts'

experience levels.

www.manaraa.com

82

The third part of data analysis examined the impacts of

different levels of system complexity and system analysts'

experience on the performance of each of the two system

development tools with respect to their syntactical quality

and productivity. A pair-wise t-test was used to test for

differences between the performance of each system development

tool as the levels of system complexity and system analysts'

experience change. ' A graphical analysis was also used to

assist in interpreting the results from the t-tests.

The fourth part of data analysis involved analyzing the

subjects' attitude toward the system development tools and the

subjects' task protocol as recorded on the video-tape.

' first three parts of the data analysis are presented

in Chapter V. The fourth part is presented in Chapter VI.

Summary

This study uses a controlled laboratory experiment as the

research methodology. The experimental design used is a 23

factorial design with three independent variables. The

independent variables include the type of system development

tool (traditional versus CASE), system complexity (simple

versus complex systems), and system analysts' experience (less

versus more experienced analysts). The dependent variables

analyzed in this research include syntactical quality of the

design specifications (measured as a percentage of seeded

errors found and correctly changed) and productivity of the

www.manaraa.com

83

syntactic verification tasks (measured as the number of seeded

errors found and correctly changed per unit of system analyst

time).

A sample size of 32 system analysts was used in the

experiments. The subjects were classified into two groups:

less experienced system analysts and more experienced system

analysts. The less experienced system analysts included

sixteen students enrolled in advanced system analysis and

design courses at Georgia State University and Kennessaw State

College. The more experienced system analysts included

sixteen professional system analysts who have been working as

system analysts with firms in the Atlanta, Sacramento, and San

Francisco areas for at least five years.

In the experiments, the subjects were requested to

diagnose the provided specifications for internal consistency,

correctness, and syntactic completeness; and to make all

necessary corrections to the errors found. The subjects were

randomly assigned to work on one of the two problem cases (a

billing system representing a less complex system case and an

inventory control system representing a more complex system

case) using one of the two randomly assigned system

development tools (traditional versus CASE tools).

The experimental data were analyzed by the MANOVA and

ANOVA methods to test the significance of the effects of

system development tools, system complexity, system analysts'

experience on syntactical quality of the design specifications

and productivity of the syntactic verification tasks. The

www.manaraa.com

84

pair-wise t-test was used to evaluate the relative performance

of traditional and CASE tools, and to examine the impacts of

different levels of system complexity and system analysts'

experience on the performance of each of the two tools.

Finally, additional analyses were performed to examine the

subjects* attitude toward the system development tools and to

analyze their video-taped task protocols.

www.manaraa.com

CHAPTER V

EXPERIMENTAL RESULTS

Thirty-two laboratory experiment sessions (one session

for each subject) were conducted to collect data for

investigating the effects of system development tools, system

complexity, and system analysts' experience on the syntactical

quality of system specifications and the productivity of the

syntactic verification task. Appendix G presents the primary

experimental data (i.e., syntactical quality and productivity

indices) collected from these experiments. The purpose of

this chapter is to present the analyses of the experimental

data and discuss the results. The analysis is organized into

three parts:

(1) Testing the significance of the effects of system

development tools, system complexity, system analysts*

experience on syntactical quality of the design

specification and productivity of the syntactical

verification tasks (research question #1);

(2) Comparing the traditional and CASE tools with respect to

their performance in syntactical quality and productivity

(research question #2); and

(3) Examining the effects of different levels of system

complexity and system analysts1 experience on the

85

www.manaraa.com

86

syntactical quality and productivity performance of the

traditional and CASE tools (research question #3).

Finally, this chapter summarizes and discusses the

experimental results.

Testing the Significance of the Effects of

System Development Tools, System Complexity,

and System Analysts' Experience on

the Syntactical Quality and Productivity

The significance of the main and interaction effects of

the independent variables (i.e., system development tools,

system complexity, and system analysts' experience) on the

dependent variables (i.e., syntactical quality and

productivity) was tested using the MANOVA statistical

technique. The MANOVA test can identify if the centroids

(vectors) of the dependent variables are equal across all

levels of the independent variables. The results of MANOVA

are presented in Table 13. Following observations and

conclusions can be made from this table.

(1) The MANOVA results show that all main effects (i.e.,

effects of each of the independent variables, system

development tools (T), system complexity (C), and system

analysts' experience (E)) are statistically significant at the

.0001, .0090, and .0001 levels of significance, respectively.

The significance of all main effects (T, C, and E) suggests

that a change in any of the independent variables (the type of

www.manaraa.com

87

Table 13

MANOVA Results

Dependent Variables: Syntactical Quality Index (Q)
Syntactical Productivity Index (P)

Wilks' Num Den
Source of Variation Criterion F Value DFa DFb Pr>Fc

System Development Tool (T) .217505 41. 3723 2 23 .0001*
System Complexity (C)
System Analyst's Experience (E)

.664041 5. 8182 2 23 .0090* System Complexity (C)
System Analyst's Experience (E) .446560 14. 2524 2 23 .0001*
T x C .780443 3. 2352 2 23 .0578*
T x E .499434 11. 5260 2 23 .0003*
C x E .992518 0 . 0867 2 23 .9173
T x C x E .955029 0 . 5415 2 23 .5891

Note: a Numerator's degrees of freedom for the F value
b Denominator's degrees of freedom for the F value
c Significance probability value associated with the F

value
* Significance at the .05 level

www.manaraa.com

88

system development tools, the level of system complexity, or

the level of system analyst's experience) can significantly

affect the syntactical quality and/or the productivity of

syntactic verification tasks.

(2) The MANOVA results further indicate that two-way

interactions between system development tools and system

complexity (T x C) and between system development tools and

system analysts' experience (T x E) are statistically

significant at the .0578 and .0001 levels of significance,

respectively. The interaction between system complexity and

system analysts' experience (C x E), however, is not

significant at the .05 level.

The significance of T x C and T x E two-way interactions

suggest that the effect of system development tools on the

syntactical quality and productivity is contingent upon the

level of system complexity and system analysts' experience.

These results can be interpreted as follows: the magnitude of

changes in the syntactical quality and productivity generated

by the two system development tools (traditional and CASE

tools) are significantly different from one another when

either the level of system complexity or the level of system

analysts' experience changes.

(3) For the three-way interaction between the system

development tools, system complexity, and system analysts'

experience (T x C x E), the MANOVA results indicate that it is

not significant at the .05 level.

www.manaraa.com

89

As explained previously, the MANOVA can identify if

centroids (vectors) of the dependent variables are equal

across all levels of the independent variables. Inequality of

these centroids are confirmed by MANOVA when significant

differences in at least one of the dependent variables are

detected. MANOVA, however, can not identify whether the

differences occur in all dependent variables or only a subset

of these variables. Therefore, in order to provide additional

insight into effect of the independent variables on each of

the dependent variables, two sets of the Univariate Analysis

of Variance (ANOVA) were performed. The ANOVA results for the

syntactical quality indices and productivity indices are

respectively presented below.

ANOVA Results for Syntactical Quality

Table 14 presents the results of the ANOVA analysis for

the syntactical quality measure. The following observations

are suggested from the examination of this table.

(1) The ANOVA results show that the main effect of the

independent variable, system development tools (T) is

significant at the .0001 level. The main effect of the

independent variable, system complexity (C) is significant at

the .0499 level. However, the main effect of the system

analysts' experience (E) is found to be significant only at

the .1000 level. These results suggest that the syntactical

quality is significantly affected by the type of system

www.manaraa.com

90

Table 14

ANOVA Results on Syntactical Quality

Dependent Variable: Syntactical Quality Index (Q)

Sum of - • Mean
Source DFa Squares Square F Value Pr>Fb

Model 7 4395.642187 627.948884 8.90 .0001
Error 24 1693.102500 70.545937
Corrected Total 31 6088.744687

R-Square C.V.c Root MSEd Q Mean

.721929 37.04662 8.399163 22. 6718750

Source - DFa .. Anova SSe E Value Pr>Fb

System Development Tool (T) ' 1 3509.125312 49.74 .0001*
System Complexity (C) 1 300.737812 4.26 .0499*
System Analysts' Experience (E) 1 204.525312 2.90 .1015
T x C 1 286.202813 4.06 .0553*
T x E 1 8.100313 0.11 .7377
C x E 1 9.137813 0.13 .7221
T x C x E 1 77.812812 1.10 .3041

Note: a Degrees of freedom
Significance probability value associated with the F

value
c Coefficient of variation
d Square root of the mean square of the error term
® Sum of squares
* Significance at the .05 level

www.manaraa.com

91

development tools and by the level of system complexity, but

not by the level of the system analyst's experience.

(2) The ANOVA results indicate that the interaction

between system development tools and system complexity (T x C)

has a marginal effect on the syntactical quality at the level

of significance of .0553. All other two-way interactions

(i.e., (T x E) and (C x E)) are not significant at the .05

level. The significance of T x C interaction suggests that

the effect of system development tools on the syntactical

quality is contingent upon levels of system complexity. This

result may be interpreted as follows—the magnitude of changes

of syntactical quality resulting from the use of a traditional

tool as the level of system complexity changes are

significantly different from the syntactical quality resulting

from the use of a CASE tool.

(3) Finally, the three-way interaction effect (T x C x

E) is not found to be significant at the .05 level.

ANOVA Results for Productivity of

the Syntactic Verification Tasks

Table 15 presents the ANOVA results for productivity of

the syntactic verification tasks. The following observations

and conclusions can be made from this table.

(1) The ANOVA results indicate that all main effects (T,

C, and E) are significant at the .0001, .0021, and .0001

levels, respectively. These results suggest that a change in

www.manaraa.com

92

Table 15

ANOVA Results on Syntactical Productivity

Dependent Variable: Syntactical Productivity Index (P)

Source DFC

Model 7
Error 24
Corrected Total 31

R-Square

.855992

Sum of
Squares

1326.132297
223.102825
1549.235122

C.V.c

44.72821

Mean
Square

189.447471
9.295951

Root MSEd

3.048926

F Value Pr>Fb

20.38 .0001

P Mean

6.81656250

Source DFa Anova SSe F Value Pr>Fb

System Development Tool (T) 1 705.4707031 75.89 .0001*
System Complexity (C) 1 111.0422531 11.95 .0021*
System Analysts' Experience (E) 1 266.7472531 28.69 .0001*
T x C 1 54.1060031 5.82 .0238*
T x E 1 183.5049031 19.74 .0002*
C x E 1 1.2920281 0.14 .7126
T x C x E 1 3.9691531 0.43 .5197

Note: a Degrees of freedom
b Significance probability value associated with the F

value
c Coefficient of variation
d Square root of the mean square of the error term
e Sum of squares
* Significance at the .05 level

www.manaraa.com

93

any of the independent variables (the type of system

development tool, the level of system complexity, or the level

of the system analyst's experience) can significantly affect

the productivity of the syntactic verification tasks.

(2) The two-way interactions in the ANOVA results

indicate two significant interactions effects. The

interaction effect of system development tools and system

complexity (T x C) is found to be significant at the .0238

level, whereas the interaction effect of system development

tools and system analyst experience (T x E) is found to be

significant at the .0002 level. The interaction of system

complexity and system analyst's experience (C x E), however,

is not found to be significant at the .05 level.

The significance of the two way interactions of system

development tools and system complexity (T x C) and system

development tools and system analyst's experience (T x E)

suggests that the magnitude of changes in productivity of the

syntactic verification tasks generated by the use of a

traditional tool as either level of system complexity or level

of system analysts' experience changes are significantly

different from that generated by the use of a CASE tool.

(3) The three-way interaction (T x C x E) effect is not

significant at the .05 level.

www.manaraa.com

94

Comparing the Use of Traditional and CASE Tools with Respect

to Their Performance in Syntactical Quality and Productivity

The results from the MANOVA and ANOVA analyses suggest

that the syntactical quality and productivity measures are

significantly affected by the type of system development tools

used, and the levels of system complexity and system analysts'

experience. Furthermore, the relative differences in

performance of the two system development tools (traditional

versus CASE tools) seems to be contingent upon the levels of

system complexity and system analysts' experience.

Pair-wise t-tests were used to test for differences in

the syntactical quality and productivity provided by the two

tools under each of the following four conditions:

(1) Less experienced analysts performing the syntactical

verification tasks on a simple system.

(2) Less experienced analysts performing the syntactical

verification tasks on a complex system.

(3) More experienced analysts performing the syntactical

verification tasks on a simple system.

(4) More experienced analysts performing the syntactical

verification tasks on a complex system.

www.manaraa.com

95

Differences in Syntactical Quality

Generated bv the Use of Traditional and CASE Tools

Table 16 presents the results of t-test analysis

examining the differences in syntactical quality generated by

the use of traditional and CASE tools under the above four

conditions. The t-test results in Table 16 shows the mean

values of the syntactical quality index, the differences in

the means of syntactical quality index for the traditional and

CASE tools, and the associated level of statistical

significance (p) of the difference. In this table, the number

in the upper, right-hand corner of each cell is the number

assigned to the test condition, and the asterisk (*) indicates

that the difference in quality performance between the

traditional and CASE tools was significant at the 0.05 level.

The t-test results indicate that differences in the

syntactical quality for the two types of system development

tools are significant in the following three conditions:

- Less experienced analysts performing the syntactic

verification tasks on a simple system (i.e., condition

number 1)

- Less experienced analysts performing the syntactic

verification tasks on a complex system (i.e., condition

number 2), and

More experienced analysts performing the syntactical

verification tasks on a complex system (i.e., condition

number 4).

www.manaraa.com

96

Table 16

Differences in Syntactical Quality Generated by Traditional
and CASE Tools (n=4)

Quality Index

Simple
System

Complex
System

Statistic CASE Traditional CASE Traditional

Less
Experienced
Analysts

mean
mean diff
P

1

9.075 26.150
-17.075

.024*

2

11.275 34.075
-22.800

.001*

More
Experienced
Analysts

mean
mean diff
P

3

15.175 28.025
-12.850

.095

4

13.275 44.325
-31.050

.005*

Note: Mean diff = mean differences (CASE-Traditional)
p = significance level

The number in the upper, right-hand corner of each
cell is the testing condition number.

The asterisk (*) indicates significant differences
at .05 level.

www.manaraa.com

97

In all these three conditions, the traditional tool

provides significantly higher syntactical quality than the

CASE tool.

In condition number 3 (i.e., more experienced analysts

performing the syntactical verification tasks on a simple

system), the traditional tool seems to provide a higher

syntactical quality than the CASE tool. However, the t-test

results indicate that the differences between the two tools is

not significant at the .05 level. In this case, the

differences, however, are significant only at the .10 level.

Differences in Productivity of the Syntactic Verification

Tasks Generated by the Use of Traditional and CASE Tools

Table 17 presents the results of the t-test analysis to

examine differences in productivity of the syntactic

verification tasks in case of the use of traditional and CASE

tools.

At the .05 level of significance, the t-test results

indicate that differences in syntactical productivity for the

two system development tools are significant under all four

testing conditions. The results indicate that the use of the

traditional tool provides significantly higher syntactical

productivity than the use of the CASE tool under all

conditions.

www.manaraa.com

98

Table 17

Differences in Syntactical Productivity Generated by
Traditional and CASE Tools (n=4)

Productivity Index

Simple
System

Complex
System

Statistic CASE Traditional CASE Traditional

1 2

Less
Experienced
Analysts

mean
mean diff
P

0.915 3.620
-2.705
.006*

2.343 8.840
-6.497
.002*

3 4

More
Experienced
Analysts

mean
mean diff
P

2.203 13.078
-10.875

.019*

3.025 20.510
-17.485

.000*

Note: mean diff = mean differences (CASE-Traditional)
p = significance level

The number in the upper, right-hand corner of each
cell is the testing condition number.

The asterisk (*) indicates significant differences
at .05 level.

www.manaraa.com

99

Examining Effects of System Complexity and

System Analysts' Experience on syntactical Quality and

Productivity of the Use of Traditional and CASE Tools

The results from the MANOVA and ANOVA analyses reported

previously indicate that the interaction effect between system

development tools and system complexity (T X C) was

significant for both the syntactical quality and productivity

of the syntactic verification tasks. Furthermore, the results

suggested that the interaction effect between system

development tools and system analysts' experience (T x E) is

significant only for the productivity of the syntactic

verification tasks and not for the syntactical quality of the

resulting specifications. These results, however do not

provide any insight toward understanding the nature of these

interactions. In order to provide a better understanding of

how different levels of system complexity (C) and system

analysts' experience (E) affect the syntactical quality and

productivity performance of the two system development tools

(T), experimental data were analyzed further by a pair-wise t-

test at the .05 level of significance.

Effect of System Complexity on Syntactical Quality and

Productivity of the Use of Traditional and CASE Tools

Table 18 presents the results from a pair-wise t-test

analysis performed to examine the effects of system complexity

www.manaraa.com

100

Table 18

Effect of System Complexity on the Syntactical Quality and
Productivity Performance of Traditional and CASE tools (n=8)

System Development Tool

Factor Level CASE Traditional

Effect of System Complexity
on Syntactical Quality:

- Simple System

- Complex System

Quality Index

12.125

12.275

27.088

39.200

Effect of System Complexity
on Syntactical Productivity:

- Simple System

- Complex System

Productivity Index

1.559

2.684

8.349

14.675

Note: The asterisk (*) indicates significant differences
at .05 level of significance.

www.manaraa.com

101

(a) Effect of System Development Tools and
System Complexity on Quality Index

Simple Complex
System Complexity

type of Tool Uied

CASE

Traditional

(b) Effect of System Development Tools and

System Complexity on Productivity Index

Type of Tool Used

CASE

Traditional

Simple Complex
System Complexity

Figure fL Effect of system development tools and system complexity on the
syntactical quality and productivity.

www.manaraa.com

102

on the performance of the use of traditional and CASE tools.

Figure 6 shows a graphical depiction of the results presented

in Table 18.

Table 18 presents the mean values of syntactical quality

and productivity indices provided by the use of the two system

development tools at the two different levels of system

complexity (simple versus complex systems). Multiple pair-

wise t-tests were performed to test if differences in the

syntactical quality and productivity measures between the two

levels of system complexity are significance at the .05 level

of significance. The results are discussed below.

Effect of System Complexity

on Syntactical Quality

The results in Table 18 and Figure 6(a) suggest the

following insights into the effect of system complexity on the

syntactical quality of the two system development tools.

(1) The interaction between system complexity and system

development tools has a significant effect on the syntactical

quality.

(2) The use of a traditional tool provides higher

syntactical quality than the use of the CASE tool. This

implies that levels of system complexity affect the

syntactical quality performance of the traditional tool more

than the CASE tool.

www.manaraa.com

103

(3) The syntactical quality generated by a traditional

tool improves as the level of system complexity increases.

The t-test analysis results presented in Table 19 confirm that

this syntactical productivity improvement is significant at

the .05 level.

(4) The levels of system complexity have no significant

effect on the syntactical quality performance of the CASE

tbol.; The t-tê t analysis results in Table 18 also confirm

that the difference in the syntactical quality generated by a

CASE tool as the level of system complexity increases is not

significant at the .05 level.

Effect of System Complexity on Productivity of the

Syntactic Verification Tasks

The results in Table 18 and Figure 6(b) provide the

following with regard to the effect of system complexity on

productivity of the syntactic verification tasks of the two

system development tools:

(1) The system complexity and system development tools

has a significant effect on productivity of the syntactic

verification tasks.

(2) The levels of system complexity affect the

productivity of the syntactic verification tasks of the use of

a traditional tool more than the use of the CASE tool.

(3) Productivity of the syntactic verification tasks

generated by using a traditional tool improves as the level of

www.manaraa.com

104

system complexity increases. The t-test analysis results

presented in Table 19 confirm that this syntactical

productivity improvement is significant at the .05 level of

significance.

(4) The levels of system complexity has some effect on

the productivity performance of the CASE tool. Although an

improvement in the syntactical productivity resulting from

using the CASE tool is quite small, the results of t-test

analysis indicate that this improvement is statistically

significant at the .05 level of significance.

Effect of System Analysts' Experience on

Syntactical Quality and Productivity Performance

of the Use of Traditional and CASE Tools

Table 19 presents the results from pair-wise t-tests

examining the effects of system analysts' experience on the

syntactical quality and productivity of the syntactic

verification tasks when using a traditional and the CASE

tools. To assist in the interpretation of these results, the

results in Table 19 were graphically presented in Figure 7.

Effect of System Analysts' Experience

on the Syntactical Quality

The results in Table 19 and Figure 7(a) provide the

following insights into the effect of system analysts'

www.manaraa.com

105

Table 19

Effect of System Analysts's Experience on the Syntactical
Quality and Productivity Performance of Traditional and CASE
tools (n=8)

System Development Tool

Factor Level CASE Traditional

Effect of System Analysts'
Experience on Syntactical
Quality:

- Less Experienced Analysts

- More Experienced Analysts

Quality Index

10.175 30.113

14.225 36.175

Effect of System Analysts*
Experience on Syntactical
Productivity:

- Less Experienced Analysts

- More Experienced Analysts

Productivity Index

1.629

2.614

6.230

16.794

Note: The asterisk (*) indicates significant differences
at .05 level of significance.

www.manaraa.com

106

(a) Effect of System Development Tools and
System Analyst's Experience on Quality Index

60-1

40-

Typs of Tool Used

CASE

Traditional

Lass More
System Analyst's Experience

(b) Effect of System Development Tools and
System Analyst's Experience on Productivity Index

50 n

40-

30-

Type of Tool Used

CASE

Traditional

Less More
System Analyst's Experience

Rgure 7. Effect of system development tools and system analyst's
experience on the syntactical quality and productivity.

www.manaraa.com

107

experience on the syntactical quality performance of the two

system development tools.

(1) The interaction effects between system analyst's

experience and system development tools has no significant

effect on the syntactical quality.

(2) The syntactical quality generated by a traditional

tool improves as the level of system complexity increases.

However, t-test analysis results presented in Table 19

indicate that this syntactical quality improvement when using

a traditional tool is not significant at the .05 level of

significance.

(3) The syntactical quality generated by the CASE tool

improves as the level of system complexity increases.

However, the t-test analysis results presented in Table 19

indicate that this syntactical quality improvement when using

the CASE tool is not significant at the .05 level of

significance.

Effect of System Analysts' Experience

on Productivity of the Syntactic Verification Tasks

The results in Table 19 and Figure 7(b) provide the

following insights into the effect of system analysts'

experience on the productivity performance of the two system

development tools.

www.manaraa.com

108

(1) The interaction between system analysts' experience

and system development tools has a significant effect on the

productivity of the syntactic verification tasks.

(2) The levels of system analysts' experience affect the

productivity performance of a traditional tool more than the

CASE tool.

(3) Productivity of the syntactic verification tasks

generated by a traditional tool improves as the level of

system complexity increases. The t-test analysis results

presented in Table 19 confirm that this productivity

improvement is significant at the .05 level of significance.

(4) Unlike the use of a traditional tool, the levels of

system analysts' experience has no significant effect on the

productivity performance of the CASE tool. The t-test

analysis results confirm that the difference in productivity

of the syntactic verification tasks of the CASE tool is not

significant at the .05 level of significance.

Summary and Discussion of Major Findings

The results from the experiments reported previously

provide many insights into the research questions that have

been stated in Chapter III. The following summarize and

discuss the major findings from the experiments as related to

the research questions.

In order to investigate the significance of the system

development tools, system complexity, and system analysts'

www.manaraa.com

109

experience on the syntactical quality and productivity

(research question #1), the experimental data were analyzed by

the MANOVA and ANOVA methods. Table 20 summarizes the results

of MANOVA and ANOVA. The major findings obtained from these

results are summarized and discussed below.

(1) The main effect of system development tools is

statistically significant on both the syntactical quality and

productivity. This suggests that the use of a traditional

tool and the CASE tool provide significant differences in both

syntactical quality and productivity. Therefore, a decision

to select a system development tool for verifying the

specification is critical.

(2) The main effect of system complexity is significant

on both syntactical quality and productivity of the syntactic

verification tasks. This suggests that different levels of

system complexity may significantly change the syntactical

quality and productivity of the syntactic verification tasks.

(3) The main effect of system analysts' experience is

statistically significant on the syntactical productivity, but

not on the syntactical quality. This suggests that a major

benefit obtained from using more experienced analysts is an

improvement in productivity. The use of more experienced

analysts, however, does not substantially improve the

syntactical quality.

(4) The interaction between system development tools and

system complexity (T x C) has a significant effect on the

syntactical quality as well as the syntactical productivity.

www.manaraa.com

Table 20

Summary of the MANOVA and ANOVA Results

Source of Variation
MANOVA
Results

ANOVA Results on

Source of Variation
MANOVA
Results

Syntactic
Quality

Syntactic
Productivity

System Development Tool
System Complexity
Analysts' Experience
T*C
T*E
C*E
T*C*E

Significant
Significant
Significant
Significant
Significant

Significant
Significant

Significant

Significant
Significant
Significant
Significant
Significant

Note: Significant at the 0.05 level.
Blank represents insignificant at 0.05 level.
T = System Development Tool
C = System Complexity
E = System Analyst's Experience

www.manaraa.com

Ill

This finding suggests that changes in the syntactical quality

and productivity are contingent upon the type of system

development tools used and the level of system complexity.

(5) The interaction between system development tools and

system analysts' experience (T x E) has a significant effect

on the syntactical productivity, but not on the syntactical

quality.

(6) The interactions between system complexity and

system analysts' experience (C x E), and among system

development tools, system complexity, and system analysts'

experience (T x C x E) have no significant effect on both the

syntactical quality and productivity.

A further investigation using pair-wise t-test analysis

was performed to determine whether one system development tool

always outperforms the other tool in terms of syntactical

quality and productivity of the syntactic verification tasks,

and if not, what is the relative performance of the two tools

under each combination of system complexity and system

analysts' experience (research question #2). The results from

pair-wise t-test analysis for the syntactical quality and

productivity indicate that the use of a traditional tool is

better than the use of the CASE tool in terms of the

syntactical productivity in all experimental conditions.

However, in terms of the syntactical quality the use of a

traditional tool is better than the use of the CASE tool in

three out of four experimental conditions. The experimental

condition number 3 (when more experienced system analysts

www.manaraa.com

112

perform the syntactical verification tasks on a simple system)

is the only condition where the syntactical quality levels

produced by the two tools are not significantly different.

These experimental results do not support the claims by CASE

vendors and the expectations by most of the IS practitioners

that the use of the CASE tool should lead to an improvement in

both system design quality and productivity. On the contrary,

the experimental results indicate that the CASE tool performs

poorly, in comparison with a traditional tool, in terms of

both syntactical quality and productivity. These results

motivate us to investigate further irito the question of why

the CASE tool does not improve the syntactical quality and

productivity as expected by most IS practitioners and CASE

vendors. This investigation is provided in the next chapter.

Finally, the effects of the different levels of system

complexity and system analysts1 experience on the performance

of traditional and CASE tools in terms of syntactical quality

and productivity of the syntactic verification tasks were

investigated and summarized as below.

The MANOVA and ANOVA results presented in Table 20

indicate that the interaction between system development tools

and system complexity is significant on both syntactical

quality and productivity, and the interaction between system

development tools and system analysts1 experience is

significant on syntactical productivity, but not on

syntactical quality. However, the MANOVA and ANOVA do not

explain exactly how different levels of system complexity and

www.manaraa.com

113

system analysts's experience affect the syntactical quality

and productivity performance of traditional and CASE tools.

To provide a better understanding into this research question,

the experimental data were further analyzed by the pair-wise

t-tests and graphical method. The results of these analyses

may be summarized as follows.

Effect of System Complexity. For the use of a

traditional tool, the level of system complexity has a

significant effect on both syntactical quality and

productivity. As the level of system complexity increases,

the syntactical quality and productivity levels produced by a

traditional tool also increase. For the use of the CASE tool,

the level of system complexity has a significant effect on

only syntactical productivity. The improvement in the level

of syntactical productivity level produced by the CASE tool is

small as the level of system complexity increases. The level

of system complexity has no significant effect on the

syntactical quality produced by a CASE tool.

Effect of System Analysts' Experience. For the use of a

traditional tool, the level of system analysts' experience has

a significant effect on syntactical productivity, but not on

syntactical quality. As the level of system analysts'

experience increases, the syntactical productivity produced by

a traditional tool also increases. For the use of the CASE

tool, the level of system analysts' experience has no

significant effect on both the syntactical quality and

productivity.

www.manaraa.com

CHAPTER VI

EXPLANATION BASED ON DIRECT OBSERVATION AND

POST-EXPERIMENTAL INTERVIEW DATA

The experimental results presented in Chapter V suggest

that the performance of the system analysts who used the CASE

tool was lower than those system analysts who used the

traditional paper-pencil based tool. This finding is both

contrary to the claims by CASE vendors and inconsistent with

the expectations of a majority of CASE users.

The purpose of this chapter is to investigate the reason

for these unexpected results. The data collected from direct

observation and post-experimental interviews were analyzed to

seek answers to these results. It is our conjecture that the

patterns of use of the CASE tool and the analyst's attitudes

towards the tool would provide insight into these results.

The data analysis in this chapter is organized into three

parts. The first part involves the analysis of the system

analyst's attitude toward the system development tools. It

examines the relative preferences of system analysts for the

two development tools and explores the reasons for this

preference. In the second part, task-protocols (i.e., the

ways system analysts performed syntactic verification tasks)

are analyzed in order to determine if there is an association

114

www.manaraa.com

115

between the types of system development tools, the ways system

development tools are utilized, and the levels of syntactical

quality and productivity changes. Finally, the third part

involves the examination of the use of selected features of

the CASE tool and the discussion of the effectiveness of each

of these features in assisting system analysts in performing

verification tasks.

System Analyst's Attitude Toward

System Development Tools

System analyst's attitudinal data were collected through

post-experiment interviews. Upon completion of the

experimental task, each system analyst (subject) was

interviewed regarding their preference for using either tool

for the verification tasks. Table 21 presents the results of

this interview. The results indicate that 75% of the subjects

assigned to the CASE tool in the experiment, and 56% of the

subjects assigned to the traditional tool prefer the use of

the CASE tool over the traditional tool. Only 25% of subjects

assigned to the CASE tool and 44% of subjects assigned to the

traditional tool prefer the use of the traditional tool.

Overall 67% of the subjects prefer the use of the CASE tool

versus only 3 3% for the use of the traditional tool. These

results support the common belief that a majority of system

analysts prefer using the CASE tool.

www.manaraa.com

116

Table 21

A Summary of CASE and Traditional tool Preferences bv Users

Number of Subjects

Type of Tool Used
in the Experiment

Type of Tool Preferred
Type of Tool Used
in the Experiment CASE Traditional

CASE 12
(75%)

4
(25%)

, -.Traditional ... i "-..'.I 9 '
(56%)

... . . 7 : . .
(44%)

TOTAL 21
(67%)

11
(33%)

www.manaraa.com

117

The system analysts were also asked to give reasons to

support their preferred choice of system development tools.

Common reasons provided by system analysts who chose the CASE

tool as system development tool of their choice were as

follows.

- CASE tools would assist system analysts in reviewing and

revising the previous system design documentation faster

and easier than traditional tool.

- CASE tools can be used to update and generate a new

system design specification easier and better than

traditional tool.

- System design documents developed by CASE tools can be

used for further reference and modification.

CASE tools support and reinforce a structured approach.

Therefore, CASE tools should prevent system analysts from

making syntactical errors in the system specification.

CASE tools should assist system analysts in developing

the system specification without any errors.

Data flow diagrams developed and diagnosed by CASE tool

are of higher quality than the ones developed by

traditional paper-pencil based tools.

Once the system specification is developed, CASE tools

can maintain and regenerate a consistent and good

specifications.

CASE tools provide system analysts with capabilities to

perform cross-checking, level balancing, and graphical

analysis.

www.manaraa.com

118

The above data and comment suggest that most of the

subjects believe that CASE tool would improve their

performance in the syntactic verification of system

specifications. On the other hand, results from experiments

presented in Chapter V indicate that system analysts who

utilized the CASE tool performed poorly with respect to both

the syntactical quality and productivity of the syntactic

verification task. A relevant question to be asked therefore

is: "Despite the apparent preference for the CASE tool, why

does the CASE tool degrade the syntactical quality and

productivity of system analysts?"

Reasons provided by system analysts who prefer to use

the traditional tool (paper and pencil) over the CASE tool may

provide some insights into the poor performance of the CASE

tool. A list of comments is presented below.

- When using traditional paper-pencil based tools to verify

system specification, errors identification and errors

correction can be performed concurrently.

Traditional tools are easy to use and allow system

analysts to make numerous copies of similar diagrams.

Traditional tools may be used to provide a clear idea of

the overall scope of system specifications before using

the CASE tool.

- Although while using the traditional tools it take longer

time to detect all errors and redraw/rewrite

specification document, they are easy to use and take

less time to correct errors.

www.manaraa.com

119

In case of large specifications of 3 to 7 levels or 100

to 300 data flow diagrams, traditional tools provide a

complete overview of system specifications but correction

of errors at lower levels of specification may be

difficult.

Traditional tools may be useful for a brief sketch of

changes or corrections of the specifications.

Traditional tools are useful for developing a new,

specific and unknown application.

- When using traditional tools, system analysts sometime

lose track of the latest working version of the

specification.

. • ; t.These respondents,-therefore, believe that traditional

tools are easy to use and take less time to correct errors

than the CASE tool. This belief, however, seems to be

tempered by the possibility that in complex situations the use

of traditional tool may not be adequate. As a result, this

belief seems to support most of system analysts' belief that

the use of CASE tool may improve their performance in complex

situations.

Potential Explanations of Poor Performance

Provided by the CASE Tool

The poor performance of the CASE tool may be due to one

or more of several potential reasons stated below. The

purpose of the following analysis was to determine, as far as

www.manaraa.com

120

possible, which of these potential reasons were likely to

contribute to the poor performance while using the CASE tool:

(1) The system analysts who participated in the

experiment were not familiar with the applications

which they were asked to work with in the

experiment.

(2) The system analysts who participated in the

experiment did not know how to use the CASE tool.

(3) The CASE tool may ha.ve been used in a manner

inconsistent with the intended design of the tool.

(4) The CASE tool does not provide features which are

easy to use and effective in the verification
\

processes.

At the outset, the first explanation can be ruled out

because only those subjects who were familiar with the CASE

tool and the billing and inventory control application areas

were invited to participate in this study. The subjects also

used the inventory control and billing systems tutorial

provided by the CASE tool during their training sessions. It

can, therefore, be reasonably inferred that the subjects were

familiar with these types of applications.

As far as the second explanation is concerned, the

subject selection procedure ensured that only those subjects

who had been trained on the CASE tool and had some experience

with it, participated in the experiment. However, the subject

selection procedures did not guarantee that the subjects used

the CASE tool as intended by its designer, or were entirely

www.manaraa.com

121

comfortable in using all features of the CASE tool. The

answers to these two possibilities mentioned in the last

sentence will be investigated while examining explanation (3)

and (4) stated above, in detail.

An Investigation of How System Analysts Perform

the System Verification tasks Using a Given Tool

A possible explanation of the CASE tool not performing as

per expectations may be attributed to the use of the CASE tool

in a manner which was not as intended by its designers. It is

conjectured that if the CASE tool is not used in a manner

consistent with how its designers intended it to be used (as

described in the user's manual for the CASE tool), it may not

deliver the productivity and quality benefits envisaged by its

designers.

In order to investigate this conjecture, the video taped

task-protocols of all the subjects were reviewed. The task-

protocols were analyzed by preparing a task analysis report

which identified, in a step-by-step manner, the activities

performed by each analyst. Additionally, comments, if any,

made by the analyst while performing these activities were

also noted. Appendix H shows examples of the task analysis

report for four subjects.

A review of the task-protocols of the subjects suggests

that the detailed activities in the verification tasks can be

classified into four major categories:

www.manaraa.com

122

(1) review of the provided system specifications (e.g.

problem descriptions, task descriptions, data flow

diagrams, data dictionaries, and process

descriptions)

(2) identification of possible syntactic errors in the

system specification

(3) interpretation of the errors and locating these

error on the specification documents or screens, and

(4) correction of the identified errors.

In case of the traditional paper-pencil based tool, the

error identification, interpretation and location activities

are done-by human observer, and occur more or less

simultaneously. - In the situation where the CASE tool is used

for the verification task, the CASE tool's "analysis feature"

can be used for identifying possible syntactic errors. The

interpretation and location of these errors in the

specification documents even when using the CASE tool,

however, remains essentially a human task.

Although all of the above activities were performed for

all treatments in the experiment, differences were observed in

the overall patterns in which these activities were performed

under different treatments.

Task Pattern within the Traditional Tool Treatment

All subjects using the traditional tool started with a

review of the provided system specification and, then,

www.manaraa.com

123

continued to identify, interpret, locate, and correct errors

in a concurrent and interleaved manner. That is, a subject

would identify and locate the error on the specification and

would go on to correct the error before proceeding to the

identification and correction of the next error. Thus the

four activities of identification, interpretation and

location, and correction were all performed in a concurrent

manner in this phase. Figure 8 (a) shows the graphical

representation of the task pattern within the traditional tool

treatment.

Task Patterns within the CASE Tool Treatment

Three different patterns of activities were observed in

the treatments which employed the use of the CASE tool.

Figure 8 (b) shows the graphical representation of the task

patterns within the CASE tool treatment.

In Pattern A, the subjects started with the review of the

system specification on a computer monitor and, then,

proceeded to perform a set of concurrent activities of

identification, interpretation and location, and correction of

errors on a computer monitor. This pattern looks very similar

to the traditional pattern identified above.

In Pattern B, the subjects started with the review of the

system specification on computer monitor and, then performed

the set of concurrent activities of identification,

interpretation and location, and correction of errors on

www.manaraa.com

124

(a) Task pattern within the traditional tool treatment;

>-> Start Stop Review
Identify

Interpret & Locate
Correct errors

(b) Task patterns within the CASE tool treatment:

Pattern A:

>->-Start Stop
Review
on

Screen

Identify
Interpret & Locate
Correct errors

on screen

Pattern B:

>-Start Stop
Review
on

Screen

Identify
errors
on

screen

Print
hardcopy
specifi­
cation

Interpret
Locate
Correct
errors
on

screen

Pattern C:

->- ->-Start Stop
Review
on

Screen

Generate
Analysis
Report

Review
Analysis
Report,
Identify
errors

Interpret
Locate
Correct
errors
on

screen

Figure 8. Task patterns within the traditional tool and
the CASE tool treatments

www.manaraa.com

125

computer monitor in a manner similar to Pattern A. However,

the subjects did not locate the errors on the computer monitor

of the CASE workstation. Instead, for each error identified,

they proceeded to print a out related specification document

and located the error on the hardcopy document. Once the

error was fully interpreted, the subject went back to the CASE

workstation screen to make necessary corrections. Except for

the use of the printout, this pattern too is very similar to

Pattern A, and the traditional pattern described above.

In Pattern C, as in all other patterns, the subjects

started with a review of the system specification on the

computer monitor. Next, they proceeded to use the CASE tool's

"analysis feature" (see next section) to generate analysis

reports for the system specification. The analysis reports

generated in this step identify all possible syntactical

errors in the specification document (an example of an

analysis report is attached in Appendix J). The subjects

then, using human thinking and inspection, interpreted the

analysis reports and located the errors on the specification

displayed on computer screen. Once all the errors were

interpreted, located, and diagnosed, the subject went back to

the CASE workstation screen to modify the specification in

order to correct the errors.

Table 22 summarizes the number of CASE subjects who were

classified into each of these patterns within the CASE tool

treatment. The table is organized by the level of the system

analyst's experience and the level of complexity of the

www.manaraa.com

126

problem. The results in Table 22 are analyzed and discussed

as follows.

An Analysis of the Use of Task Patterns

within the CASE Tool Treatment

The results from Table 22 indicate that there does not

seem to be any differences in the patterns of usage between

less experienced and more experienced subjects. It seems as

if both sets of the subjects are about evenly divided between

pattern A and B (usage patterns which are very similar to the

traditional pattern of verification), and pattern C (usage

pattern which utilizes the full analysis capabilities of the

CASE tool). It seems as if about half of the subjects in the

CASE tool treatment are reverting back to the traditional way

of identifying errors by inspection and then interpreting and

locating errors in the specification. This result is further

confirmed by the examination of the use of specific features

of the CASE tool discussed in the next subsection. In this

section, even those subjects who used the analysis feature

express great difficulties in interpreting the analysis report

and expressed frustration with the use of this feature.

When Table 22 is examined along the complexity dimension,

the results indicate that in a complex situation most subjects

are not comfortable working with the computer monitor only.

They either print the data flow diagram specification, or work

with the printed analysis reports (i.e., Patterns B or C).

www.manaraa.com

Table 22

Task Patterns within the CASE Tool Treatment (n=16)

Level of System
Analyst's
Experience

Task Pattern System Complexity Level of System
Analyst's
Experience Simple Complex Total

Less
Pattern A
Pattern B
Pattern C

2

2
1
3

2
1
5

More
Pattern A
•Pattern B
Pattern C

2

2
2
2

2
2
4

Total
Pattern A
Pattern B
Pattern C

4

4
3
5

16

www.manaraa.com

128

From this we infer that in a complex situation, if

specifications are presented on screen at a time, the subjects

do not feel comfortable relating any screen with its

proceeding or succeeding screens. In a simple case, however,

the number of specification screens is much lower and

therefore the subjects were able to keep track of the

relationship between the various screens and were able to work

directly with the graphic features (i.e., Pattern A) only.

The Relationship between Task Patterns and Syntactic Quality

and Productivity of the Verification Task

In order to determine whether the task patterns within

the traditional and the CASE treatments have any relationships

to the syntactic quality and productivity of the verification

process, the following data were gathered from the

experiments:

(1) the number of system analysts using each pattern of

the syntactic verification activities, and

(2) the levels of syntactic quality and productivity

(i.e., mean, minimum, and maximum values) obtained

from each pattern group.

Table 23 presents these results. As shown in Figure 8,

all sixteen system analysts who were assigned to the

traditional tool treatment used the same task pattern. Of the

seven system analysts who were assigned to the CASE tool

treatment, four of them used Pattern A and three used Pattern

www.manaraa.com

129

B. The remaining nine system analysts who were assigned to

the CASE tool treatment used Pattern C. Table 23 reports the

levels of syntactic quality and productivity generated by the

subjects in each of these task patterns.

As reported in Table 23, the subjects in the CASE

treatment who did not use the analysis feature of the CASE

tool (Patterns A and B) had lower productivity and quality

performance (i.e., mean, minimum and maximum values) than

those subjects who did use the analysis feature (Pattern C).

This suggested that inappropriate use of the CASE tool results

in lower performance.

However, even those analysts who did use the analysis

feature (i.e., Pattern-C) still had worse performance than the

subjects who used the traditional tool. This is the subject

of the following investigation.

An Examination of the Use of Selected Features

of the CASE Tool

The CASE tool provides various features that assist the

system analysts in developing system specifications. These

features include the graphics feature, the data dictionary

feature, the screens and reports feature, the documentation

feature, the analysis feature, and the housekeeping feature.

A brief description of these features is presented in Table

24.

www.manaraa.com

Table 23

Task Analysis Results

Task Patterns
Number of
Subjects

Syntactic
Quality

Syntactic
Productivity

Traditional
Tool:
Pattern 16

Mean Mean

Traditional
Tool:
Pattern 16 33.1 11.5

CASE Tool:
Pattern A 4 11.7 1.5
Pattern B 3 7.1 2.3
Pattern C 9 14.1 2.4

www.manaraa.com

131

The purpose of this section is to examine the

effectiveness of the use of the selected features of the CASE

tool. The examination focuses mainly on the features needed

by the subjects to perform the syntactic verification tasks in

the experiment (i.e., the analysis, graphics, and data

dictionary features). This examination of the selected

features is based on the researcher's direct observations, the

study of video task-protocols,, and comments by the subjects on

these features during the experiment.

Analysis Feature

The analysis feature analyzes the system specification

for errors and generates various types of analysis reports.

These reports include the graph verification report, the level

balancing report, and the extended analysis report.

The graph verification report provides the information

about the correctness of data flow diagrams (i.e., omissions,

inconsistency and violation of data flow diagram rules). The

level balancing report provides information about the

completeness and consistency of data flow diagrams from one

level to another. The extended analysis report provides

information about the completeness, consistency, and

redundancy of the data dictionary entries. These entries

include data entities, elements, and records specified in the

specification.

www.manaraa.com

132

Table 24

A Brief Overview of the Features of a CASE Tool

Graphics Feature (*)

Data Dictionary Feature (*)

Screens & Reports Feature

Documentation Feature

Analysis Feature (*)

Housekeeping Feature

This feature allows the system
analyst to create and update
visual representation of the
system, its components, and the
relationships among them. The
analyst can easily modify the
graphs and use it to support an
iterative systems analysis and
design approach.

This feature allows the system
analyst to define the system and
report on the specification
data. Data Dictionary provides a
central repository for all
system information and helps
analyst ensure the consistency
of specification

This feature allows the system
analyst to develop working
models of system's input screens
and output reports.

This feature allows the system
analyst to produce hardcopy
output of every aspect of the
system, organized according to
an outline specified.

This feature assists the system
analyst in ensuring the
consistency and accuracy of data
by providing reports for
examining data and verifying its
adherence to standard
techniques.

This feature provides functions
for establishing and maintaining
projects, users, and hardware.

Note: (*) = The feature used by the subjects in performing
various task related activities.

www.manaraa.com

133

Only 9 out of 16 subjects who were assigned to the CASE

tool treatment used the analysis feature to perform the

syntactic verification tasks. They spent only a few minutes

preparing the request for generating the analysis reports, but

took 10 to 25 minutes to print 20 to 80 pages of the analysis

reports. They did not show any frustration or make any

complaints up to this point in the experiment. This suggests

that using the analysis feature makes it easy to generate the

analysis reports.

When the subjects started examining the analysis reports,

most of them had difficulties with the interpretation of the

results presented in these reports. The time used by the

subjects to interpret the reports and locate errors on the

screen was very high. Precise estimates of these times,

however, are not possible as the error correction activities

were interleaved with this task.

The subjects comments and complaints about the analysis

reports are summarized as follows.

- The analysis reports were unreasonably long and difficult

to interpret.

These reports did not provide the critical information

required for identification and location of errors on the

specifications.

The reports did not provide any alternative solutions or

recommendation for correction of the identified errors.

www.manaraa.com

134

- The system analysts suggest that these reports should

provide a layout of the scope of the real problem and a

list of all users' names and their requirement.

- The reports should provide information that assist the

system analysts in identifying what to do and how to do

it including the backup of specification before and after

changing or correcting errors.

- The analysis feature should allow the system analyst to

perform the analysis without following a set of

sequential steps because a majority of system analysts do

not use a "Top down" approach.

- . The system analysts may generate and examine all reports.

r However, they sometime do not know the meaning of the

results.

- The reports do not tell the system analysts what they

want to know and make them feel very uncomfortable.

- The system analysts who determine not to continue using

analysis feature comment that they can not understand

what is going on inside once they have changed or

corrected the specifications.

The above comments and the inordinate time requirements

for using analysis feature suggest that the analysis feature

is not easy to use and does not provide easy to understand

information needed in the identification, interpretation and

location, and correction of errors in the system

specifications. As a result, the excessive time spent in

requesting, printing and interpreting the analysis reports

www.manaraa.com

135

reduce the productivity of the use of the CASE tool and the

difficulties of interpreting the analysis reports may reduce

the quality of the system specification.

Graphics Feature

The graphics feature provides the CASE subjects with a

capability to delete, add, or modify data flow diagrams. This

feature is useful in correcting errors in the design

specifications. In the experiment, all of the CASE subjects

used the graphics feature for correcting the identified

errors. In case of the simple specification, the CASE

subjects did not show any frustration with the graphics

feature. However, in case of the large and complex

specification, the CASE subjects did not feel comfortable and

had difficulties with the graphics feature when correcting

errors displayed on the data flow diagrams. The subjects

provided several reasons for their frustration and difficulty.

Representative comments from the subjects are:

- In a complex specification, the graphics screen is

crowded with a cluster of entities, processes, data

flows, and data stores.

It is difficult to correct errors on crowded screens.

When one error correction is made on a displayed data

flow diagram, the graphics feature would automatically

redraw the diagram which, in turns, make it difficult for

the system analysts to keep up with the changes.

www.manaraa.com

136

The graphics feature did not use color to identify and

. locate errors.

- Although the graphics feature supports the iterative

errors correction activities, it took the analysts too

much time and too many steps to retrieve one data flow

diagram and make correction to just one error.

The graphics feature should provide the analysts with hot

: keys to move from one point to any other points in the

specification without having to go through several menus.

Although the graphics feature is useful in correcting

errors, it does not help the system analysts to correct

.—•....errors as quickly as they want.

rvv -> -These comments suggest that graphics feature is not easy

to use for locating and correcting the errors in complex

specifications.

Data Dictionary Feature

The data dictionary feature may be considered as a core

feature of CASE tool for developing the system specification.

This feature assists the system analysts in defining all the

elements of the structured specification, i.e., entities,

processes, data flows, and data storage. In the experiment,

only 4 out of 16 CASE subjects used data dictionary feature.

The followings are plausible reasons, summarized from the

subjects1 comments, of why a majority of subjects using the

CASE tool did not use the data dictionary feature:

www.manaraa.com

137

- The data dictionary feature is not easy to use.

It does not provide meaningful information for

identifying and correcting the errors.

Its reports are too long and difficult to interpret.

These reasons suggest that the data dictionary feature is

also difficult to use.

In summary, the results from the examination of each

selected features of the CASE tool as presented above suggest

that these features are difficult to use and time consuming.

These difficulties in using these features could be the reason

why productivity was low, and why system analysts using the

CASE tool did not discover and correct all errors and,

therefore, quality was low.

Summary

This chapter investigates the reasons for the result of

poor performance of the CASE tool presented in Chapter V. The

investigation is based mainly on direct observation and post-

experimental interview data. The results from analysis of the

system analyst's attitudes toward the CASE tool, the task-

protocols, and the examination of the use of selected features

of the CASE tool indicate that the poor performance of the

CASE tool seems to be due to the inappropriate use of the CASE

tool and the limitations of its analysis, graphics, and data

dictionary features.

www.manaraa.com

CHAPTER VII

CONCLUSIONS, IMPLICATIONS, LIMITATIONS

AND DIRECTIONS FOR FURTHER RESEARCH

The purpose of this chapter is to present conclusions,

summary of the major findings, implications, limitations and

future research directions from this research.

Conclusions

The objective of this research was to investigate the

effect of the use of CASE tools on syntactical quality of

system specification and productivity of the syntactic

verification tasks under different levels of system analysts'

experience and system complexity.

A controlled laboratory experiment was conducted to

achieve the research objective. A multi-variate analysis of

variance (MANOVA), an analysis of variance (ANOVA), and a

pair-wise t test methods were used to quantitatively analyze

experimental data. A protocol analysis of direct observation

and video tape was used to qualitatively explain results from
i

analysis of the experimental data.

A summary of the major findings is presented in the

following section.

138

www.manaraa.com

Summary of the Major Findings

139

The major findings from the controlled laboratory

experiment may be summarized as follows:

(1) The use of CASE tool provide lower quality and

productivity performances than the use of

traditional paper-pencil based tool.

(2) System complexity and system analyst's experience do

not seem to affect quality and productivity

performances of the use of CASE tool.

(3) If CASE tool is used as intended by its designer, it

provides better quality and productivity than when

it is used in the same manner as traditional tool.

However, the use of CASE tool as intended still

provides lower quality and productivity performances

than traditional tool.

(4) The problem of poor performance of CASE tool seems

to lie in the way each feature of CASE tool is used

(e.g., difficult to use and connect information).

Implications of the Research

The results of this research may have implications for

three groups of professionals in the management of information

systems area: designers of CASE tools, adopters and

implementers of CASE tools, and MIS researchers.

www.manaraa.com

Designers of CASE Tools

140

The findings from this study suggest that when designing

features and functions of CASE tools, designers of CASE tools

should take into account the way CASE users actually analyze

(i.e., verify and correct) system specifications. The

implications from the findings are presented as follows.

Possibility of integrating hyper-media technology into

the user-interfaces of CASE tools. The results presented in

chapter VI suggested that one of the major problems with the

use of CASE tools was due to navigational problems in

connecting information on one system representation screen

(e.g., a particular data flow diagram) to information on other

system representation screens (such as higher or lower data

flow diagrams, data dictionary, or process descriptions).

These navigational problems can be ameliorated by the use of

hyper-media interface which would give the analyst the

capability of retrieving the details behind any aspect of a

representation directly by connecting it to other

representations. The use of such interface would make it much

easier for the analyst to detect, analyze, and correct errors

using the CASE tools.

In addition, the development of multi-media based

tutorials and training sessions is also suggested to be

incorporated into the CASE tools. In chapter VI, it is

indicated that a number of system analysts did not use the

CASE tool in a manner which is intended by its designers.

www.manaraa.com

141

The use of multi-media based CASE tutorials and training

sessions will provide consistent and continuous training

supports that correspond to individual system analysts

learning needs.

Adopters and Implementers of CASE Tools

The findings from this study suggest that when acquiring

the CASE tools, adopters and implementers of CASE tools should

perform a careful evaluation of CASE tool features with

respect to their compatibility with how system analysts

actually analyze the system design specifications. They also

need to be trained on how to correctly use CASE tool. In the

case of experienced system analysts, the adopters need to make

sure that they will not carry over the habits acquired while

they were doing traditional paper-pencil based analysis.

MIS Researchers

Currently, MIS researchers do not know how system

analysts perform their tasks or how they interface with

automated support systems such as CASE tools (or traditional

tools). They need to study and describe how system analysts

perform all of their tasks. Possibly, a detailed Protocol

study of system analysts1 behavior and problem solving

processes is needed before CASE designers or implementer take

assessment of CASE tools.

www.manaraa.com

Limitations of the Research

142

Several limitations of the study are addressed in this

section. First, only two types of design tools (i.e.,

traditional and CASE tools) were tested. One common CASE

product was selected and used as the representative CASE tool

in this study. There are other CASE tools/products available

in the market. This study does not attempt to evaluate all

CASE tools/products. It seeks to specifically compare

effectiveness between the use of traditional and the CASE

tool.

The study is also limited in terms of system development

tasks investigated in the research. Within a system

development life cycle, there are many tasks to be performed

at each of various phases in the life cycle (see Davis &

Olson, 1985). This study focuses on investigating

effectiveness of the use of traditional tool versus the CASE

tool in performing system specification verification tasks.

Research investigations similar to this study should be

carried out to examine the effectiveness of the CASE tools in

other phases in system development life cycle. Generalizing

the results from this control laboratory experiment research

to other system development tasks or phases may not be proper.

Another limitation of the study is concerned with the

type of subjects used. The sample from schools, companies in

Atlanta, Sacramento metropolitan and nearby areas may not be

characteristic of system analysts throughout the United

www.manaraa.com

143

States. A larger sample of system analysts with qualification

and experience in system analysis and design will improve

validity of this study. Furthermore, if we can differentiate

between more experienced subjects who have only methodology

experience versus CASE tool experience, we will be able to

distinguish the effect from these two different types of

experience.

A further limitation of the study lies in the domain of

the study itself. There is a larger set of variables which

may potentially affect productivity and quality of system

development. This study is considered as an initial effort of

a long-term research, project in system development.quality and

productivity area. Although this research domain is limited,

it will provide a considerable contribution to both MIS and

CASE literature.

Directions for Further Research

This research represents an experimental investigation of

Computer-Aided Software Engineering technology and its effects

on quality of the system design specifications and

productivity of the system design verification process under

different levels of system analyst's experience and system

complexity. This study can be extended and replicated in

several directions.

www.manaraa.com

144

(1) Extend the investigation to understand each individual

system analyst's behavior and his/her problem solving

process.

(2) Extend the investigation to understand a team of system

analysts* behavior and their problem solving process.

(3) Perform the investigation using different CASE products

and components.

(4) Perform the investigation using more levels of system

complexity in order to identify which levels of the

system complexity at which CASE tools may provide

advantages over traditional tool.

(5) Perform a similar investigation within a specific company

where incentive for participation and completion of

verification of complex system using CASE tools is

offered.

(6) Perform a similar investigation using different

applications to identify which types of applications CASE

tools will provide quality and productivity advantages.

www.manaraa.com

145

APPENDIX A

CONSENT FORM

I understand that it is the best interest of scientific
inquiry not to discuss with my fellow students or colleagues
any aspect of the experiment in which I am participating. I
fully realize that such discussion may lead to possible
distortions of data and may in effect cause the entire
experiment to be abandoned. I agree to keep the experiment
confidential.

Signature Date

www.manaraa.com

APPENDIX B

146

SUBJECT BACKGROUND QUESTIONNAIRE

Please fill in your name, address, and telephone number:

Name
Company Name
Dept/Mail Stop
Address

Telephone ()

ORGANIZATION:

1. What is the primary end-product of your company?
(Check one)

1() Manufacturing 5() Financial Services
2() Consulting 6() Computer/EDP Services
3() Education 7() Government Agency
4() Utilities 8() Other

2. How many people are employed in your company?

1() Over 1000 4() 50-100
2() 500-1000 5() Under 50
3 () 100-500

3. How many people are employed in your department?

1() Over 100 4() 10-25
2() 50-100 5() Under 10
3() 25-50

4. How many people in your department use Excelerator?

1() Over 20 4() 1-5
2 () 10-20 5() None
3 () 5-10

5. If your department use Excelerator, what is the average
size of projects on which Excelerator has been used?

1() Over 3 6 man-months 4() 6-12 man-months
2 () 24-3 6 man-months 5() Less than 6 man-month
3() 12-24 man-months 6() Other

www.manaraa.com

147

If you use Excelerator, how long have you been using
Excelerator?

1() Over 36 man-months 4() 6-12 man-months
2() 24-3 6 man-months 5() Less than 6 man-month
3() 12-24 man-months 6() Other

How many systems were developed by you or by you and you
project team using Excelerator during the last three
year?

1() Over 4 systems 4(
2 () 4 systems 5(
3() 3 systems

) 2
1

systems
systems

The systems developed by you or by you and your project
team fall into which of the following categories? (Check
all that apply)

1() Billing Systems 4(
2 (•) Inventory Systems 5 (
3() Communications 6()

) Financial Management
) Database Application
Others

JOB ROLE:

9.

10.

What is your job title?

What is your job role in relation to projects using
Excelerator? (check one)

1(
2 (
3 (
4 (
5 (
6 (

Manager of department where Excelerator is used
Manager of project team using Excelerator
Member of project team using Excelerator
Librarian using Excelerator on behalf of team
User of the systems developed by project team
Not related to project using Excelerator

11. To what percentage did each of the following activities
constitute a part of your responsibilities in the last
six months? (Total should be less than or equal to 100%)

Strategic planning %
Feasibility %
Requirement %
Analysis %
Design %
Coding %
Testing %
Maintenance %

www.manaraa.com

148

12. How many years have you performed system analysis and
design tasks?

1() Over 20 years 4() 2-4 years
2() 10-20 years 5() Less than 2 years
3() 5-10 years

13. How many systems have you developed and completed during
the last five years?

1() Over 15 systems 4() 3-5 systems
2() 10-15 systems 5() Less than 3 systems
3() 5-10 systems

14. How many systems have you developed using structured
System Analysis and Design Technique (Data Flow Diagram
Technique) during the last five years?

1() Over 15 systems 4() 3-5 systems
2() 10-15 systems 5() Less than 3 systems
3() 5-10 systems

15. How many years have you performed programming tasks?

1() Over 20 years 4() 2-4 years
2() 10-20 years 5() Less than 2 years
3() 5-10 years

16. How many programs have you written and completed during
the last five years?

1() Over 30 programs 4() 5-10 programs
2() 20-30 programs 5() Less than 5 programs
3() 10-20 programs

www.manaraa.com

APPENDIX C

149

SIMPLE SYSTEM DESIGN PROBLEM CASE

Problem Description

The Watts Electric company is a large company that sells
electricity to local customers in a small city. The company
wants to develop a new computer-based billing systems to
improve the current customer billing process. The input to
the system will consist of meter number and the most recent
reading from the meter reader expressed as a six digit number.
The output of the system is a customer monthly statement.
Once the data are input, they will be processed by a computer
program that searches a file to match the input meter number
with one stored in the file. This will make it possible to
access the record corresponding to the customer who has been
assigned the meter. The number is the key for the customer
record. Other data contained in the record include customer
name and address, last meter reading, billing code, and any
unpaid balances from previous billing periods.

When the customer record is accessed, it is used to calculate
the next bill and prepare a statement that can be mailed to
the customer. The amount of electricity used is calculated by
subtracting the previous meter reading from the new reading.
The amount of electricity used is then multiplied by the
appropriated unit charge, which is determined by using the
customer's billing code and matching it in a file contains all
unit charges. Thus, if the customer's billing code is "A" the
code file is checked to determine the unit charge that
corresponds to the code of "A".

Once the amount of the current bill has been calculated, a
statement is output from the computer system. The statement
contains the customer's name and address, the date of the
statement, the amount of electricity used, the unit charge,
the beginning and ending meter readings, the amount of the
bill for the period, the last date to pay the bill, and the
dated of the next meter reading. The bill shows franchise
charges and utility taxes, along with any balance the customer
owes on the preceding month's bill. Finally, the statement
gives a grand total of charges and taxes.

www.manaraa.com

Tasks Description

150

The new system specifications were developed by an analyst who
was re-assigned to another project. You have been assigned to
this project as a system analyst. Before you start additional
work, you need to make sure that the system specifications are
correct, complete, and consistent. Your tasks include:

1) To verify the system specification for correctness,
completeness, and consistency.

2) To modify and correct the system specification so that
the above errors are corrected. When you find an error,
you can let the interviewer know the error found. Please
also explain to the interviewer any corrections to the
system specification you are making to correct those
errors.

www.manaraa.com

DATA FLOW DIAGRAMS

www.manaraa.com

152

CONTFXT DIAGRAM OF BILLING SYSTEMS

Customer-Payment

Meter-Reading
Customer-Monthly-Statement

, Prepare .
Customer
Monthly-Statement

Customer
Unit-charge-record

Meter-Numbei

Customer
Meter
Reader

Un it-Charge—File Customer-File

www.manaraa.com

153

Data Flow Diagram Level 1

Input
Meter
Reading

Customer-record 2.0

Match
Meter
Number

Match-customer-record

Customer-File
Unit-charge-record

Compute
New Bill Customer-record

New-bill 4.0

Prepare
Statement Unit-Charge-File

Customer-monthly-statement

Meter
Reader

Customer

www.manaraa.com

154

DIAGRAM 3

Customer-record
Compute
Amount
Used

Amount-used

3,2
Get
Unit
Charge

RHHnn-rn̂

Uni t -CJiarge-Fi 1 e

Unit-charge-record

Unit-charge

3.3
Compute
Amount
Billed

Amount-bille

3.4
Compute
Taxes

Taxes

Compute
Grand
Total

Customer-record

www.manaraa.com

PROCESS DESCRIPTIONS

www.manaraa.com

156

PROCESS DESCRIPTION FOR SIMPLER SYSTEM PROBLEM

PROCESS DESCRIPTION

PROCESS NUMBER:
GRAPH NAME:
PROCESS LABEL:

1.0
DFD-LEVEL1
INPUT-METER-READING

DESCRIPTION: The input data from the meter reader consists
of meter-number and the most recent reading
from the meter reader expressed as a six digit
number is received and forwarded to the
"Match-Meter-Number" process.

PROCESS DESCRIPTION

PROCESS NUMBER:
GRAPH NAME:
PROCESS LABEL:

2.0
DFD-LEVEL1
MATCH-METER-NUMBER

DESCRIPTION: The input "Meter-number" will be used to search
a "Customer-File" until it finds its matched
"Customer-record" stored in the file. The
"Meter-number" is the key for the customer
record. The match "Customer-record" is forward
to the "Compute-New-Bill" process.

PROCESS DESCRIPTION

PROCESS NUMBER:
GRAPH NAME:
PROCESS LABEL:

3.0
DFD-LEVEL1
COMPUTE-NEW-BILL

EXPLOSION DFD: DIAGRAM 3

DESCRIPTION: The match "Customer-record" is received. The
information inside the record is used to
calculate the new bill. The "Customer-record"
with the new bill information is forward to the
"Prepare-statement" process.

www.manaraa.com

157

PROCESS DESCRIPTION

PROCESS NUMBER: 3.1
GRAPH NAME: DIAGRAM 3
PROCESS LABEL: COMPUTE-AMOUNT-USED

DESCRIPTION: The "Amount-used" or amount of electricity used
is computed by subtracting the
"Beginning-meter-reading" from the
"Ending-meter-reading".

PROCESS DESCRIPTION

PROCESS NUMBER:
GRAPH NAME:
PROCESS LABEL:

3.2
DIAGRAM 3
GET-UNIT-CHARGE

DESCRIPTION: The "Unit-charge" is retrieved from the
"Unit-charge-record" in the "Unit-Charge-File"
by matching the "Billing-code" from the
"Customer-record" with the "Billing-code" in
the "Unit-charge-record" in the
"Unit-Charge-File".

PROCESS DESCRIPTION

PROCESS NUMBER: 3.3
GRAPH NAME: DIAGRAM 3
PROCESS LABEL: COMPUTE-AMOUNT-BILLED

DESCRIPTION: The "Amount-billed" is calculated by
multiplying the "Amount-used" by "Unit-charge".

www.manaraa.com

158

PROCESS DESCRIPTION

PROCESS NUMBER:
GRAPH NAME:
PROCESS LABEL:

3.4
DIAGRAM 3
COMPUTE-TAXES

DESCRIPTION: The "Taxes" is computed by multiplying the
"Amounted-billed" by the "Utility-tax".

PROCESS DESCRIPTION

PROCESS NUMBER: 3.5
GRAPH NAME: DIAGRAM 3
PROCESS LABEL: COMPUTE-GRAND-TOTAL

DESCRIPTION: The "Grand-total-charge" is equal to
"Unpaid-balance" plus "Amounted-billed" plus
"Taxes" ;and plus ̂Franchise-charge.

PROCESS DESCRIPTION

PROCESS NUMBER:
GRAPH NAME:
PROCESS LABEL:

4.0
DFD-LEVEL1
PREPARE-STATEMENT

DESCRIPTION: The "Customer-monthly-statement11 is prepared
and printed. The statement contains the
"Customer-record" forwarded from process 3.0.
When finish, each "Customer-record" is saved in
the "Customer-File".

www.manaraa.com

DATA DICTIONARY

www.manaraa.com

DATA DICTIONARY FOR SIMPLER SYSTEM PROBLEM

160

Amount-billed = Amount-used + Unit-charge
Amount-used
Beginning-meter-reading
Billing-code
Customer-address= Street + City + State + Zip-code
Customer-File = {Customer-record}
Customer-monthly-statement = Customer-record
Customer-name = First-name + Last-name
Customer-record = Meter-number + Customer-name

+ Customer-address
+ Date + Amount-used + Unit-charge
+ Beginning-meter-reading +

Ending-meter-reading
+ Last-meter-reading + Billing-code
+ Unpaid-balances + Amount-billed
+ Last-date-to-pay + Date-next-meter-reading
+ Utility-tax + Grand-total-charge
+ Franchise-charge

Date
Date-next-meter-reading
Ending-meter-reading
Franchise-charge
Grand-total-charge= Unpaid-balance + Amount-billed + Taxes
Last-date-to-pay
Last-meter-reading
Meter-number
Meter-reading = Meter-number + Recent-reading
Taxes = Amount-billed + Utility-tax
Unit-charge
Unit-charge-File = {Unit-charge-record}
Unit-charae-record= Billing-code + Amount-used + Unit-charge
Unpaid-balances
Utility Tax

www.manaraa.com

APPENDIX D

161

COMPLEX SYSTEM DESIGN PROBLEM CASE

Problem Description

Company A is a large wholesale company that purchases and
sells measuring equipment. Its annual revenues at the close
of third quarter in 1989 were $205 million. Company revenues
are growing at annual rate of 25 percent. Company A's success
stems from its ability to monitor and meet customer demand.
The items sold to customer are at a large volume and discount
rate. The fast delivery service of items from warehouse to
customers is the key to business success. Recently, company
A decided to improve its delivery service by developing a new
computer-based inventory control system for its warehouse.
The new system will be used to: 1) keep track of the level of
inventory of each items in stock, on purchasing process, and
on receiving process, 2) process customer orders forwarded
from marketing department, and 3) prepare shipping schedule,
ABC analysis report, and cycle counting report to management.

www.manaraa.com

162

Tasks Description

The new system specifications were developed by an analyst who
was re-assigned to another project. You have been assigned to
this project as a system analyst. Before you start additional
work, you need to make sure that the system specifications are
correct, complete, and consistent. Your tasks include:

1) To verify the system specification for correctness,
•• completeness, and consistency. : . ' '-

2) To modify and correct the system specification so that the
above errors are corrected. When you find an error, you
can let-the interviewer know the error found.- Please also
explain to the interviewer any corrections to the system
specification you are making to correct those errors.

www.manaraa.com

DATA FLOW DIAGRAMS

www.manaraa.com

CONTEXT DIAGRAM FOR INVENTORY CONTROL SYSTEMS

Management
Deparlmenl

rtanegament-declslon
P lanned-order-reporl

Mat jqurAunl-roporls

Fnri'ast-rfHmanf<-rnte

harkeling
Department

Inventory
Control
Process

nnlpiisftfl-niirrtia.'iR-nnlHr
Supplier

"Customer - invuioj- inlormaUatv

Customer

www.manaraa.com

DATA FLOW DIAGRAM FOR INVENTORY CONTROL SYSTEMS

rii«H(vnpr- tnvnlrp7 Informal Inn
Marketing
Department i FnrpnwI-rtpmwnrt-rMp ruslnmpr-nrfter

P lann°r1-nrilT-rppnrl Reorder
Inventory

Item-record

M;fflnni'iili'nt-ilfTlclnn 2.0
noluass
Purchase
Ordur

nnli!)isn/l^imrrlin,inriirili;r

Suppliers
-fturchase-order

Purchosa-ordur-lllo lluiii-nii)Sli:r-lllu
Supplier-Involco

Item - record Purchase-order

Receive
Purchaso
Order

5.0 ^

Update
Inventory

Iwin-record
lr dor-transaction

7.0
Prepare
Cycio

Cuuntlmj

6.0

Prepare
ADC Analyst Ordur-transaction-lilg

Customer-orifej
Cycle-counflnij-reporl

4.0

Preparo
Shipment

Kin turner-nriler,
^DC-aiicJlysis-ruiiorl

.fliislnmer-lnvnlrc-infnrmntlon

Update- inventory-report

www.manaraa.com

Diagram 1.0
Reorder-1 nventorv-Precess

Compute
Re-order
Point

Compare
Reorder-Quanllly
wllhCurrenl-on-
hand-quanllty .

Fnrfirasl-ftem and-rale
RfirtrrterTniianilly

Current-on-hand-ouantily

Reorder-quantity

Item-master-file

Generate
Planned-order

Planned-order Planned-order-report

www.manaraa.com

Diagram 2.0
Release- P urchase-Orrier-P rnnfiss

Release-purcahse-order
Management-decision

Purchase-order-file

Release-purcahse-order

Release
Purchase

Order
Release-pi irrahsp-nrrfor

An-order-quantity
Order- transaction-file

2.2
Update

On-order
-quantity

Item-master-file
ON
-vj

www.manaraa.com

Diagram 3.0
Recleve-Purchasfj-Order-Prnnfiss

Supplier-invoice

3.3 Shipment Receive
Shipment Matrh-rplpasp-piirrhasp-nrripr Generate

Receive-order

Release-purchase-order
Yalid-supplier-iflVoice

Purchase-order-file

Match-release-pur :hase-order

Order- transaction- fi le
3.2

Update
Purchase-
order-file

www.manaraa.com

Dlaaram^O
Prepare-Shipment-Process

Shipping-scredule

Verify
Customer

Order
Yal id-cusloftrwicprder

order Customer-invoice-information
Generate

B11 l-of-lading

Valid-cuslbmor-order

B f I l-of-lading

Order-transaction-file

ON

www.manaraa.com

D i a g r a m 5 . 0

U Ddate-1 nventorv- P rocess

5.3

Generate
Shipping
Schedule

5.2
Order-transaction

Get
Order

Transaction

Update
Inventory
Quantity

Shipping-schedule

Order- transact ion- fi le Item-master-file

5.4

Generate
Update
Report

Update- invpnlnry-rpport

www.manaraa.com

Diagram 5.2
Update-1 nventorv-Quantltv-P rocess

^ 5.2.1 ^
Determine
Transaction

Type

Orripr-trflnqaHInn
Issue-order

Cancel-order

Release- purchase-order

 ̂5.2.6 N
Subtract

Current-on-
hand-quantity

5.2.4
Add

On-order-
quatlty

Receive-order

Item-master-fll

 ̂5.2.2 N
Add

Current-on-
hand-quantity

5.2.3 ̂

Subtract
On-order-

quantlty

f 5.2.5 N
(Add
I Current-on-
\hand-quantlty

www.manaraa.com

i

, • '** «'* *«
Dianram 6 .JO'

P repare-ABC-Analvsis- P rocess

6.3
Bet

Item-master-
record

Item-master-record
Determine
item-class

Ilcm-class

Item-master-file

ABC-analysis-report

^ 6.4 n
Generate

ABC-analysis
Report

N5

www.manaraa.com

Diagram 7.0

Preoare-Cvcle-CountlnQ-Process

Invalid-cycle-oplion

X 7.2 >

Generate
Cycle-counting
V Report

Check
Cycle-oplion

Cycle-Option
Cyrlp-pnnntinq-rpnnrt Vpilifl-nynlR-oplinn

Item-master-file
LO

www.manaraa.com

PROCESS DESCRIPTIONS

www.manaraa.com

175

PROCESS DESCRIPTION

PROCESS NUMBER: 1.0
GRAPH NAME: DFD-FOR-INVENTORY-CONTROL-SYSTEM
PROCESS LABEL: REORDER-INVENTORY

EXPLOSION DIAGRAM:DIAGRAM 1.0

DESCRIPTION: The "Forecast-demand-rate" is received from
the Marketing-department everyday in the
morning. The "Reorder-quantity" is computed
and compared with the
"Current-on-hand-quantity" for each item in
"Item-master-file". If the "Reorder-quantity"
is greater than the
"Current-on-hand-quantity", the
"Reorder-quantity" will be used to generate
the "Planned-order" and the
"Planned-order-report" is sent to the
management department for a review and
decision to order or cancel each "Planned
order".

www.manaraa.com

176

PROCESS DESCRIPTION

PROCESS NUMBER: 1.1
GRAPH NAME: DIAGRAM 1.0
PROCESS LABEL: COMPUTE-RE-ORDER-POINT

DESCRIPTION: The "Reorder-quantity" for each item in the
"Item-master-file" is calculated by
multiplying the "Forecast-demand-rate" by the
"Lead-time" plus the "Safety-stock". The
"Lead-time" and the "Safety-stock" are stored
in the "Item-record" in the
"Item-master-file". The "Item-master-record"
is retrieved by using the "Item-number" as a
key to search for the match record. The
"Reorder-quantity" is forwarded to process 1.2

www.manaraa.com

177

PROCESS DESCRIPTION

PROCESS NUMBER: 1.2
GRAPH NAME: DIAGRAM 1.0
PROCESS LABEL: COMPARE-REORDER-QUANTITY-WITH-CURRENT-ON-

HAND-QUANTITY

DESCRIPTION: If the "Current-on-hand-quantity" for that
item is less than or equal to its
"Reorder-quantity", then the
"Reorder-quantity" is forwarded to the
"Generate-planned-order" process or process
1.3.

PROCESS DESCRIPTION

PROCESS NUMBER: 1.3
GRAPH NAME: DIAGRAM 1.0
PROCESS LABEL: GENERATE-PLANNED-ORDER

DESCRIPTION: The "Reorder-quantity" is received and the
"Planned-order" for that item is generated and
the "Planned-order-report" is printed and
forwarded to the management department for the
decision whether to release or cancel that
"Planned-order" for each item.

www.manaraa.com

178

PROCESS DESCRIPTION

PROCESS NUMBER: 2.0
GRAPH NAME: DFD-FOR-INVENTORY-CONTROL-SYSTEM
PROCESS LABEL: RELEASE-PURCHASE-ORDER

EXPLOSION DIAGRAM:DIAGRAM 2.0

DESCRIPTION: The "Planned-order" is received from process
1.0. The "Management-decision" is received
from the management department. If the
decision is to release the "Planned-order",
the "Release-purchase-order" is created and
saved in the "Purchased-order-file", then
printed and forwarded to the designate
supplier.

PROCESS DESCRIPTION

PROCESS NUMBER: 2.1
GRAPH NAME: DIAGRAM 2.0
PROCESS LABEL: RELEASE-PURCHASE-ORDER

DESCRIPTION: The "Management-decision" and "Planned-order"
are received and matched. If the decision is
to release that "Planned-order", the
"Release-purchase-order" is create and saved
in the "Purchase-order-file". The printed
"Release-purchase-order" is forwarded to the
designate supplier.

www.manaraa.com

179

PROCESS DESCRIPTION

PROCESS NUMBER: 3.0
GRAPH NAME: DFD-INVENTORY-CONTROL-SYSTEM
PROCESS LABEL: RECEIVE-PURCHASE-ORDER

EXPLOSION DIAGRAM:DIAGRAM 3.0

DESCRIPTION: The "Supplier-invoice" together with the
shipment is received at the receiving station
inside the warehouse. The "Supplier-invoice"
is matched with the "Purchased-order" in the
"Purchase-order-file". If match, then,
"Receive-order" is generated and forwarded to
the "Order-transaction-file", else the
shipment is returned to the supplier.

PROCESS DESCRIPTION

PROCESS NUMBER:
GRAPH NAME:
PROCESS LABEL:

3.1
DIAGRAM 3.0
RECEIVE-SHIPMENT

DESCRIPTION: The "Supplier-invoice" together with the
shipment are received at the receiving station
in the warehouse. The "Supplier-invoice" is
matched against the "Release-purchase-order"
in the "Purchase-order-file". If match, then,
the match "Release-purchase-order" is
forwarded to the process 3.2 to update the
"Purchase-order-file" and process 3.3 to
generate the "Receive-order" and stored in the
"Order-transaction-file".

www.manaraa.com

180

PROCESS DESCRIPTION

PROCESS NUMBER: 3.2
GRAPH NAME: DIAGRAM 3.0
PROCESS LABEL: UPDATE-PURCHASE-ORDER-FILE

DESCRIPTION: The matched "Release-purchase-order" is
received. The "On-order-quantity" is
recalculated by subtracting the
"Receive-quantity" from the pervious
"On-order-quantity". The updated
"Release-purchase-order" is replaced in the
"Purchase-order-file".

PROCESS DESCRIPTION

PROCESS NUMBER: 3.3
GRAPH NAME: DIAGRAM 3.0
PROCESS LABEL: GENERATE-RECEIVE-ORDER

DESCRIPTION: The match "Release-purchase-order" is
received. The "Receive-order" is created and
saved in the "Order-transaction-file" for
updating the "Item-master-file" in process
5.0.

www.manaraa.com

181

PROCESS DESCRIPTION

PROCESS NUMBER: 4.0
GRAPH NAME: DFD-FOR-INVENTORY-CONTROL-SYSTEMS
PROCESS LABEL: PREPARE-SHIPMENT

EXPLOSION DIAGRAM:DIAGRAM 4.0

DESCRIPTION: The "Customer-order" is received from the
Marketing department. The valid
"Customer-order" is stored in the
"Order-transaction-file". The -
"Shipping-schedule" is received from process
5.0 (Update-inventory-process). The
"Bill-of-lading" is created and sent to the
customer. The "Customer-invoice-information"
is forwarded to the Marketing department.

PROCESS DESCRIPTION

PROCESS NUMBER: 4.1
GRAPH NAME: DIAGRAM 4.0
PROCESS LABEL: VERIFY-CUSTOMER-ORDER

DESCRIPTION: The "Customer-order" is received and checked
against the "Current-on-hand-quantity" for
each item ordered. If the
"Current-on-hand-quantity" is zero, then the
"Customer-order" is rejected, else the valid
"Customer-order" is forwarded to process 4.2.

www.manaraa.com

182

PROCESS DESCRIPTION

PROCESS NUMBER: 4.2
GRAPH NAME: DIAGRAM 4.0
PROCESS LABEL: GENERATE-BILL-OF-LADING

DESCRIPTION: The valid "Customer-order" is received and
checked against the "Shipping-schedule" for
each order. If match, the "Bill-of-lading" is
created, printed and sent together with a
shipment package to the customer. The
"Customer-invoice-information" is forwarded to
the Marketing department.

PROCESS DESCRIPTION

PROCESS NUMBER: 5.0
GRAPH NAME: DFD-FOR-INVENTORY-CONTROL-SYSTEMS
PROCESS LABEL: UPDATE-INVENTORY

EXPLOSION DIAGRAM:DIAGRAM 5.0

DESCRIPTION: The "Order-transaction" is retrieved from the
"Order-transaction-file". The "Item-record" is
retrieved from the "Item-master-file", updated,
and replaced back into the "Item-master-file".
The "Shipping-schedule" is generated and
forwarded to process 4.0 for preparation of
shipment. The "Update-inventory-report" is
printed and sent to the Management department for
further analysis.

www.manaraa.com

183

PROCESS DESCRIPTION

PROCESS NUMBER: 5.1
GRAPH NAME: DIAGRAM 5.0
PROCESS LABEL: GET-ORDER-TRANSACTION

DESCRIPTION: The order is retrieve from the
I'Order-transaction-rfile".. There are; four types
of order: receive-order,
release-purchase-order, cancel-order, and
issue-order. Each order is forwarded to
process 5.2 for proper updating procedure.

PROCESS DESCRIPTION

PROCESS NUMBER: 5.2
GRAPH -NAME:- ̂ DIAGRAM 5.0
PROCESS LABEL: UPDATE-INVENTORY-QUANTITY

EXPLOSION DIAGRAM:DIAGRAM 5.2

DESCRIPTION:

www.manaraa.com

184

PROCESS DESCRIPTION

PROCESS NUMBER: 5.2.1
GRAPH NAME: DIAGRAM 5.2
PROCESS LABEL: DETERMINE-TRANSACTION-TYPE

DESCRIPTION: The "Order-transaction" is received. The
transaction type is determined:
If it is "Receive-order", the transaction goes
to process 5.2.2 (Add
Current-on-hand-quantity) and process 5.2.3
(Subtract On-order-quantity).
If it is "Release-purchase-order", the
transaction goes to process 5.2.4 (Add
On-order-quantity).
If it is "Cancel-order", the transaction goes
to process 5.2.5 (Add
Current-on-hand-quantity).
If it is "Issue-order", the transaction goes
to process 5.2.6 (Subtract
Current-on-hand-quantity).
When finish, the "Item-master-file" is
updated.

PROCESS DESCRIPTION

PROCESS NUMBER: 5.3
GRAPH NAME: DIAGRAM 5.0
PROCESS LABEL: GENERATE-SHIPPING-SCHEDULE

DESCRIPTION: The "Shipping-schedule" consists of
"Issue-order" transactions is printed and
forward to process 4.0 for shipment
preparation.

www.manaraa.com

185

PROCESS DESCRIPTION

PROCESS NUMBER: 5.4
GRAPH NAME: DIAGRAM 5.0
PROCESS LABEL: GENERATE-UPDATE-REPORT

DESCRIPTION: The "Update-inventory-report" is printed and
forwarded to the Management department.

PROCESS DESCRIPTION

PROCESS NUMBER: 6. 0 '•
GRAPH NAME: DFD-FOR-INVENTORY-CONTROL-SYSTEMS
PROCESS LABEL: PREPARE-ABC-ANALYSIS

EXPLOSION DIAGRAM: DIAGRAM 6.0

DESCRIPTION: The "Item-record" for each item is retrieved
from the "Item-master-file". The ABC value is
computed and updated the "Item-master-file".
The "ABC-analysis-report" is printed and sent
to the Management Department.

www.manaraa.com

186

PROCESS DESCRIPTION

PROCESS NUMBER: 6.1
GRAPH NAME: DIAGRAM 6.0
PROCESS LABEL: GET-ITEM-MASTER-RECORD

DESCRIPTION: The "Item-record" from the "Item-master-file11
is retrieved sequentially and forwarded to
process 6.2 (Compute-%item-value).

PROCESS DESCRIPTION

PROCESS NUMBER: 6.2
GRAPH NAME: DIAGRAM 6.0
PROCESS LABEL: COMPUTE-%ITEM-VALUE

DESCRIPTION: The "Item-total-value" is calculated by
multiplying the "Unit-cost" by the
"Customer-order-allocation".
The "Accumulated-total-value" is computed by
adding the "Item-total-value" to the previous
"Accumulated-total-value".
The "Percent-Item-value" is, then, computed by
dividing the "Item-total-value" by
"Accumulated-total-value".
Then, the "%Item-value" is forwarded to
process 6.3 (Determine-item-class).

www.manaraa.com

187

PROCESS DESCRIPTION

PROCESS NUMBER: 6.3
GRAPH NAME: DIAGRAM 6.3
PROCESS LABEL: DETERMINE-ITEM-CLASS

DESCRIPTION: If 0.0 < Percent-Item-value <= 0.2, then
"Item-class" is equal .to "Inexpensive-item".
If 0.2 < Percent-Item-value <= 0.8, then
"Item-class" is equal to
"Less-important-item".
If 0.8 < Percent-Item-value, then "Item-class"
is equal to "Important-item".
The "Item-class" is forwarded to process 6.4
(Generate-ABC-analysis-report).

.PROCESS DESCRIPTION

PROCESS NUMBER: 7.0
GRAPH NAME: DFD-FOR-INVENTORY-CONTROL-SYSTEMS
PROCESS LABEL: PREPARE-CYCLE-COUNTING

EXPLOSION DIAGRAM:DIAGRAM 7.0

DESCRIPTION: The "Item-record" is retrieved from the
"Item-master-file" sequentially. The
"Cycle-option" is checked and used to generate
the "Cycle-counting-report" which will be sent
to the Management department for further
analysis.

www.manaraa.com

188

PROCESS DESCRIPTION

PROCESS NUMBER: 7.1
GRAPH NAME: DIAGRAM 7.0
PROCESS LABEL: CHECK-CYCLE-OPTION

DESCRIPTION: The "Cycle-option" is checked against the
time, if the "Cycle-option" is incorrect, the
invalid "Cycle-option" is printed, else it is
forwarded to process 7.2
(Generate-Cycle-Counting-Report).

PROCESS DESCRIPTION

PROCESS NUMBER: 7.2
GRAPH NAME: DIAGRAM 7.0
PROCESS LABEL: GENERATE-CYCLE-COUNTING-REPORT

DESCRIPTION: The "Cycle-counting-report" contains all the
"Item-record" that have the
valid-cycle-option. The
"Cycle-counting-report" is printed and sent to
the Management department.

www.manaraa.com

DATA DICTIONARY

www.manaraa.com

190

DATA DICTIONARY FOR COMPLEX SYSTEM PROBLEM

ABC-analysis-report = { Item-record + Item-class-code >
Accumulated-total-value
Cancel-order = Customer-order
Customer-address = Street + City + State + Zip-code
Customer-invoice-information = Customer-order

+ Bill-of-lading
Customer-name
Customer-order

Customer-order-number= ID
Cycle-counting-report =
>
Bill-of-lading =

Last-name + First-name
Customer-order-number
+ Customer-name + customer-address
+ [Item-number + Order-quantity]

{ Item-record + Cycle-counting-code

Customer-order + Stock-location
+ Shipping-quantity +

Shipping-personnel-name
Forecast-demand-rate = Item-number + Forecast-quantity
Forecast-quantity
Invalid-cycle-option
Issue-order =
Item-master-file =
Item-number =
Item-record

Item-total-value
Management-decision
On-order-quantity
Order-quantity
Order-transaction

Order-transaction-file =
Percent-item-value
Planned-order

Customer-order
{ Item-record }
ID
Item-number + Item-description
+ Unit-of-measure + Stock-location
Unit-cost + Unit-price
+ Planning-data

[Current-on-hand-quantity
+ On-order-quantity
+ Customer-order-allocation]

+ Supplier-number + Item-class
[Important-item,
less-important-item,
Inexpens ive-item]

+ Cycle-counting-code [Daily,
Weekly, Monthly, Bi-monthly,
Quarterly, Semi-annual,
Annual]

{ Item-number + [Release, Cancel]}
Reorder-quantity

[Receive-order,
Release-purchase-order,
Cancel-order, Issue-order]
{ Order-transaction }

= Item-number + Reorder-quantity

www.manaraa.com

DATA DICTIONARY FOR COMPLEX SYSTEM PROBLEM
(continued)

191

Planned-order-report
Purchase-order-file
Receive-order
Receive-quantity
Release-purchase-order

Reorder-quantity
Shipping-quantity
Shipping-personnel-name
Shipping-schedule
Stock-location
iSupplier-address
Supplier-invoice

Supplier-name
Supplier-number
Supplier-record

Update-inventory-report
Valid-cycle-option

{ Planned-order >
{ Release-purchase-order }
Item-number + Receive-quantity

Purchase-order-number
+ Supplier-record
+ { Item-number "*

+ On-order-quantity }

{ Issue-order }

Supplier-record
+ { Item-number + Receive-quantity}

Supplier-number + Supplier-name
+ Supplier-address
{ Item-record >

www.manaraa.com

192

APPENDIX E

THE ACTUAL SEEDED ERRORS IN THE
SIMPLE SYSTEM DESIGN PROBLEM CASE

Error Error Error Error Error
Location No Symbol Name Description Correction

Context 1 Data flow Customer Incorrect From customer to the
diagram Payment direction process

2 Data flow Billing Missing symbol Add data flow symbol
code between process

and unit charge
file

3 Data flow Billing Missing name Add data flow name
code "Billing-code"

4 Data flow Customer Incomplete Data flow name
data flow "Customer-record"
name

DFD 1 Data flow None Missing data Add data flow name
level 1 flow name b/w "Meter-reading"

"Meter-reader"
and Process 1

2 Data flow Customer Incorrect Change direction as
record direction from Process 4 to

a Customer-file
3 Data flow New bill Incorrect name Change data flow

name to "Customer-
record"

4 Data flow None Missing data Add data flow name
flow name "Meter-number"
b/w Process 2
and Customer
file

5 Process Compute Missing process Add process number 3
New Bill number

Data 1 DD entry Amount- Missing Add definition as
Diction­ used definition "number of cycle
ary count"
(DD) 2 DD entry Beginning- Missing Add definition as

meter- definition "number of cycle
reading count"

3 DD entry Billing- Missing Add definition as
code definition "six digits

number"
4 DD entry Date Missing Add definition as

definition "month/day/year"

www.manaraa.com

193

Appendix E (continued)

Error Error Error Error Error
Location No Symbol Name Description Correction

Data 5 DD entry Date-next- Hissing Add definition as
Diction­ met er- definition "number of cycle
ary reading count"
(DD) 6 DD entry Ending-

meter-
reading

Missing
definition

Add definition as
"number of cycle
count"

7 DD entry Franchise- Incorrect Add definition as entry
charge definition "percentage"

8 DD entry Last-date-
to-pay

Incorrect
definition

Add definition as
"month/day/year"

9 DD entry Last-meter
-reading

Incorrect
definition

Add definition as
"number of cycle
count"

10 DD entry Meter-
number

Missing
definition

Add definition as
"six digit number"

11 DD entry Unit-
charge

Missing
definition

Add definition as
"dollar amount"

12 DD entry Unpaid-
balance

Incorrect
definition

Add definition as
"dollar amount"

13 DD entry Utility- Missing
definition

Add definition as
charge

Missing
definition "percentage"

Total 22

www.manaraa.com

194

APPENDIX F

THE ACTUAL SEEDED ERRORS IN THE
COMPLEX SYSTEM DESIGN PROBLEM CASE

Error Error Error Error Error
Location No Symbol Name Description Correction

Context 1 Data flow n/a Missing data Add data flow
diagram

n/a
flow name b/w name "Bill-of-
process and lading"
customer entity

Diagram 1 Data flow Item- Missing an Add an arrow head
level 1 record arrow head b/w to data flow from

Process 1 and Item-master-file
Item-master- to Process 1

2 Data flow Item- Missing an Add an arrow head
record arrow head b/w to data flow from

Process 2 and Item-master-file
Item-master- to Process 2
file

3 Data flow n/a Missing data Add data flow name
flow from "Item-number"from
Process 2 to Process 2 to

— — - "Item-master- Item-master-file
'Jo ci file

4 Data flow n/a Missing data Add data flow name
flow from "Item-record"from
Process 5 to Item-master-file
Item-master- to Process 5
file

5 Data flow Item- Missing an Add an arrow head
record arrow head b/w to data flow from

Process 5 and Item-master-file
Item-master- to Process 5
file

6 Data flow Item- Missing an Add an arrow head
record arrow head b/w to data flow from

Process 4 and Item-master-file
Item-master- to Process 4
file

7 Data flow Item- Missing an Add an arrow head
record arrow head b/w to data flow from

Process 6 and Item-master-file
Item-master- to Process 6
file

www.manaraa.com

195

Appendix F (continued)

Error Error Error Error Error
Location No Symbol Name Description Correction

8 Data flow n/a Missing data Add data flow name n/a
flow from
Process 6 to
Item-master-
file

"Item-record"from
Process 6 to
Item-master-file

9 Data flow Item-
record

Missing an
arrow head b/w
Process 7 and
Item-master-
file

Add an arrow head
to data flow from
Item-master-file
to Process 7

10 Data flow n/a Missing data Add data flow name n/a
flow from
Management
entity to
Process 7

"Cycle-option"
from Management
entity to Process 7

11 Data flow n/a Missing data
flow from
Process 5 to
Process 4

Add data flow name
"Shipping-schedule"
from Process 5 to
Process 4

12 Data flow Customer-
order

Missing an
arrow head b/w
Process 4 and
Order-transac
tion-file

Add an arrow head
to data flow from
Process 4 to Order-
transaction-file

13 Data flow Order-
transact­
ion

Missing an
arrow head b/w
Order-transac
tion-file and
Process 5

Add an arrow head
to data flow from
Order-transaction-
file to Process 5

14 Data flow n/a Missing data
flow from
Process 2 to
Order-transac
tion-file

Add data flow name
"Released-purchase-
order" from Process
2 to Order-transact
ion-file

15 Data flow Received-
order

Missing an
arrow head b/w
Order-transac
tion-file and
Process 3

Add an arrow head
to data flow from
Process 3 to Order-
transaction-file

16 Data flow Purchased-
order

Missing an
arrow head b/w
Purchased-
order-file and
Process 3

Add an arrow head
to data flow from
Purchased-order-
file to Process 3

www.manaraa.com

Appendix F (continued)

196

Error Error Error Error Error
Location No Symbol Name Description Correction

17 Data flow n/a Hissing data Add data flow name
flow from "Purchased-order-
Process 3 to number"from Process
Purchased-order 3 to Purchased-
-file order-file

18 Data flow n/a Missing data Add data flow name n/a
flow from "Invalid-invoice"
Process 3 to from Process 3 to
Supplier entity Supplier entity

19 Data flow Purchased- Incorrect data Correct data flow
order flow name from name to "Released-

Process 2 to purchase-order"
Purchased-order
-file

20 Data flow Purchased- Missing an Add an arrow head
order arrow head b/w to data flow from

Purchased- Process 2 to
order-file and Purchased-order-
Process 2 file

21 Data flow n/a Missing data Add data flow name
flow from "Item-number"
Process 1 to from Process 1 to
Item-master- Item-master-file
file

Diagram 1 Data flow n/a Missing data Add data flow name
1 flow from "Item-number"

Process 1.1 to from Process 1.1 to
Item-master- Item-master-file
file

2 Data flow n/a Missing data Add data flow name
flow name b/w "Item-record"
Process 1.1 and from Item-master-
Item-master- file to Process 1.1
file

3 Data flow n/a Missing an Add an arrow head
arrow head b/w to data flow from
Item-master- Item-master-f ile
file and to Process 1.1
Process 1.1

4 Data flow Reorder- Incorrect data Correct name to
quantity flow name b/w "Computed-reorder-

Process 1.1 quantity"
and Process 1.2
Process 1.1

www.manaraa.com

Appendix F (continued)

197

Error Error Error Error Error
Location No Symbol Name Description Correction

Diagram 1 Data flow n/a Hissing data Add data flow name
2 flow b/w "Item-number"

Process 2.1 and from Process 2.1 to
Item-master- Item-master-file
file

2 Data flow n/a Hissing data Add data flow name n/a
flow name b/w "Item-record" from
Item-maBter- Item-master-file
file and to Process 2.1
Process 2.1

3 Data flow n/a Hissing data Add data flow name n/a
flow name b/w "Item-record" from
Item-master- Process 2.2 to
file and Item-master-file
Process 2.2

4 Data flow Released- Hissing an arrow Add arrow head to
purchase- head b/w data flow from
order Process 2.1 and Process 2.1 to

Purchased-order Purchased-order-
-file f ile

Diagram 1 Data flow Shipment Incorrect data Delete data flow
3 flow, material symbol and name

flow is not "Shipment"
allowed in
data flow
diagram

Diagram 1 Data flow n/a Hissing data Add data flow name
4 flow into "Item-record" to

Process 4.1 Process 4.1

Diagram 1 Data flow n/a Hissing data Add data flow name
5 flow name b/w "Order-transaction-

Item-master- record" from
file and Item-master-file
Process 5.1 to Process 5.1

2 Data flow n/a Missing data Add data flow name
flow symbol b/w "Item-number" from
Item-master- Process 5.2 to
file and Item-master-file
Process 5.2

www.manaraa.com

Appendix F (continued)

198

Error Error Error Error Error
Location No Symbol Name Description Correction

Diagram 3 Data flow n/a Missing data Add data flow name
5 flow name b/w "Item-record" from

Item-master- Process 5.2 to
file and Item-master-file
Process 5.2

< 4, Data flow ,n/a Missing an Add an arrow head to ,n/a
arrow head b/w data flow from
Item-master- Item-master-file to
file and Process 5.2
Process 5.2

5 Data flow n/a Missing data Add data flow name
flow name b/w "Item-record" from
Item-master- Process 5.4 to
file and Item-master-f ile
Process 5.4

6 Data flow n/a Missing an arrow Add an arrow head to
head b/w data flow from
Item-master- Item-master-file
file and to Process 5.4
Process 5.4

Diagram 1 Data flow n/a Missing data Add data flow name
' 5-1 . flow into • , "Item-record" to

Process 5.2.1 go into Process
5.2.1

2 Data flow n/a Missing data Add data flow name
flow b/w "Item-record" from
Process 5.2.2 Item-master-file to
and Item-master Process 5.2.2
-file

3 Data flow n/a Missing data Add data flow name
flow name b/w "Item-record"
Item-master-
file and
Process 5.2.4

4 Data flow n/a Missing an arrow Add data flow name
head b/w "Item-record"
Item-master-
file and
Process 5.2.5

5 Data flow n/a Missing data Add data flow name
flow name b/w "Item-record"
Item-master-
file and
Process 5.2.6

www.manaraa.com

199

Appendix F (continued)

Error Error Error Error Error
Location No Symbol Name Description Correction

Diagram 6 Data flow n/a Hissing data Add data flow name
5.2 flow name b/w "Item-record"

Item-master-
file and
Process 5.2.3

Diagram 1 Data flow n/a Missing data Add data flow name
6 flow b/w "Item-number"

Item-master- b/w Process 6.1
- file and and Item-master-

Process 6.1 file
2 Data flow n/a Hissing data Add data flow name

flow name b/w "Item-record"
Item-master-
file and
Process 6.2

3 Data flow Item- Incorrect data Correct data flow
master- flow name b/w name to "Valid-
record Process 6.1 and item-record"

Process 6.2
4 Data flow n/a Missing data Add data flow name

flow name b/w "Item-record"
Item-master-
file and
Process 6.3

Diagram 1 Data flow n/a Hissing data Add data flow name
7 flow name b/w "Item-record"

Item-master- b/w Process 7.2
file and and Item-master-
Process 7.2 file

2 Data flow n/a Missing data Add data flow name
flow b/w "Item-number"
Item-master- from Process 7.2 to
file and Item-master-file
Process 7.2

Data 1 DD entry Accumulat- Hissing Add definition as
Diction­ ed-total- definition "dollar amount"
ary value
(DD) 2 DD entry Cycle- Hissing data Add data entry and

counting- entry and definition as
code definition "one digit number"

3 DD entry Forecast- Hissing Add definition as
quantity definition "unit of measure"

www.manaraa.com

200

Appendix P (continued)

Error Error Error Error Error
Location No Symbol Name Description Correction

Data 4 DD entry Invalid- Missing Add definition as
Diction­ cycle- definition "cycle-counting-

ary option code"
(DD) 5 DD entry Item-total

-value
Hissing
definition

Add definition as
"dollar amount"

6 DD entry Order-
quantity

Missing
definition

Add definition as
"unit of measure"

7 DD entry Percent-
it em-
value

Missing
definition

Add definition as
"percentage" ..

8 DD entry Receive- Missing
definition

Add definition as
quantity

Missing
definition "unit of measure"

9 DD entry Reorder-
quantity

Missing
definition

Add definition as
"unit of measure"

10 DD entry Shipping-
quantity

Missing
definition

Add definition as
"unit of measure

11 DD entry Shipping-
personal-
name

Missing
definition

Add definition as
"string of
characters"

12 DD entry Stock- Missing Add definition as
.. re­ ,location definition ."three characters"

13 DD entry Supplier-
address

Missing
definition--

Add definition as
"string of
characters"

14 DD entry Supplier-
name

Missing
definition

Add definition as
"string of
characters"

15 DD entry Supplier-
number

Missing
definition

Add definition as
"six digits
numbers"

16 DD entry Valid-
cycle-
option

Missing
definition

Add definition as
"cycle-counting
code"

Total 66

www.manaraa.com

bj<
mbi

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

201

APPENDIX G

THE EXPERIMENTAL DATA

Independent Variables

System Analyst's
Tools Complexity Experience

Dependent Variables

Quality Productivity

Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE

Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Complex
Complex
Complex
Complex
Complex
Complex
Complex
Complex
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Complex
Complex
Complex
Complex
Complex
Complex
Complex
Complex

Less
Less
Less
Less
More
More
More
More
Less
Less
Less
Less
More
More
More
More
Less
Less
Less
Less
More
More
More
More
Less
Less
Less
Less
More
More
More
More

40.90
27.30
18.20
18.20
13.60
22.70
40.90
34.90
33.30
37.90
33.30
31.80
39.40
57.60
48.50
31.80
9.10
4.54
9.10
13.60
18.20
9.10
18.20
15.20
6.67
21.70
6.67
10.00
6.67
11.67
26.70

8 .00

5.14
4.05
2.53
2.76
5.71
15.20
21.40
10.00
10.38
10.87
6.51
7.60
24.10
17.51
24.28
16.15
0.96
0.40
0 .86
1.44
3.20
1.57
1.84
2.20
1.20
4.30
1.49
2.38
1.50
2.55
3.80
4.25

www.manaraa.com

202

APPENDIX H

EXAMPLES OF TASK ANALYSIS REPORT

Report Number: 1
Subject code:
Total Time:
Tool Used:
Complexity:
Experience:

222-1
160 minutes
CASE tool
Hioh I complex\
High <more>

List of Activities:

1. Subject starts reading problem description and instruction provided
on a floppy diskette and IBM PC AT (5 minutes)

2. When finish, subject starts using CASE tools to review data flow
.diagrams via graphic feature on screen

J. (.1 minute) ...
3. Subject starts at the first context data flow diagram on screen, then

quickly browseB through seven or eight lower level of data flow
diagrams, and returns to context diagram level
(1 minute)

4. At the context diagram level, subject looks at external entities and
try to get more information about each external entities from their
description
(1 minute) . .

5. Subject also looks at'central process on context diagram and make a
! -comment:---.,.. - •

(1 minute)
" the description of the process is hard to read on the
screen. It is also in a narrative form. It can be
indented "

6. On process description screen, subject attempts to rearrange process
description paragraphs into an indented form which he/she feels very
comfortable to read and understand
(1 minute)

7. When finish, subject saves all of changes on reports, processes and
outputs descriptions
(1 minute)

8. Subject exits graphic feature
9. Subject enters CASE tools analysis feature, then comments:

(1 minute)
" I want to get some reports and see what sort of things
exist in this system specification."

10. When subject finds no report, then comments:
" No report 1 I need to add one."

11. Subject enters report option on screen, creates new report format,
executes report selected option, and displays report design on
screen, then, exits report option
(4 minutes)

12. Subject enters an analysis preparation feature, selects data flow
diagram analysis option, then generates a summary of data flow
diagram analysis and displayed the results on screen, and make
comment:
(2 minutes)

" I want to perform a multi-tasking while waiting for
output from analysis preparation."

13. Subject exits analysis preparation feature and reenters to analysis
feature and selects report option, then attempts to execute reports
and finds entity lists are not available
(2 minutes)

www.manaraa.com

203

14. Entity list is created and saved. A report for entity list is
unsuccessfully generated. Subject decides to exit report option
(6 minutes)

15. Subject exits analysis feature
16. Enter data dictionary feature
17. Subject looks at existing data dictionary list

(1 minute)
18. Data dictionary list and report is generated and printed on provided

printer
(2 minutes)

19. Subject reads a hardcopy of data dictionary list and report, then
comments:
(1 minute)

" Although I can see analysis report against electronic
information (on screen), I can not use screen for anything
other than just get some overview. I can not see all detail
information because it has several processes, data flows and
data stores. I can not see all of them side by side."

20. Subject decides to exit data dictionary feature, reenters an analysis
feature, and selects graph verification option.
An analysis result is generated and displayed on screen.
Subject looks at the results on screen and compares them with the
print out of data dictionary report, then decides to exit a graph
verification option and an analysis feature
(3 minutes)

21. Subject reenters a graphic feature and reviews a context data flow
diagram, then comment:
(8 minutes)

" On this diagram, a customer receives product and bill-of-
lading. Therefore, if we look at a customer external entity,
the question is should customer send a customer order to an
inventory control process or to a marking department at this
level."
" I think it is a problem here. Let's assume that a
customer receives product and bill-of-lading from an inventory
control process and, then, let marketing department take care
of customer orders."

22. Subject corrects this error right away on screen by giving a name to
an unlabeled data flow as "bill-of-lading", then, provides
description of the data flow and explode it into record and number of
occurrences in data dictionary, then comments:
(3 minutes)

" Let's assume that "bill-of-lading" is a correct data flow
name. Bill-of-lading data flow is, then, defined as a document
flow from inventory control process to customer which contains
both merchandise and shipping information."

23. Subject feels comfortable with his/her new description and saves
(updates) this changes on diskette

24. Subject continues on a context diagram and looks at a customer
external entity and a data flow name "forecasting-demand" from a
marketing department external entity.
Subject feels that he/she can not understand why "forecasting-demand"
data flow is in a context data flow diagram.
Subject needs more information about this relationship and will come
back to correct them later
(1 minute)

25. Subject decides to go back to an analysis feature again
26. An extended analysis option is selected.

A report on record content analysis is executed and printed on paper
via provided printer
(2 minutes)

27. Subject looks at reports and compares them with data flow diagram
displayed on screen

www.manaraa.com

204

(1 minute)
28. Subject looks at a customer invoice data flow and detects that it

contains order transaction record, then looks at a supplier invoice
data flow from a supplier external entity to an inventory control
process, and looks at a cycle-counting process
(1 minute)

29. Subject concludes that a customer invoice and supplier invoice are
similar, and a cycle counting is the same as cycle-code described in
the item-master file.
Since these three objects who make up exactly the same activity, they
should be merged and called with the same synonym
(1 minute)

Notice: from observer's comment.
Subject gets confused between customer invoice and invoice
received from supplier, and assumes that they are similar and
decides to give them the same name. This misunderstanding may
be due to subject deficiency in distinguishing their
differences under a time-constraint condition.

30. Subject decides to run a full extended analysis, while waiting for
the analysis results, he/she comments:
(3 minutes)

" About the problem description itself, I have a question
about how this company make 25% growth in their revenue when
they have an incomplete analysis of their information systems.
This is an example of multi-tasking (thinking) while I am
waiting for the results."

31. While waiting for all analysis reports to be completely printed out
on paper, subject comments:
(2 minutes)

" Again, I get all reports and assume that I know what I am
doing but sometime I don't. One of the tasks required for this
experiment is to determine correctness, completeness and
consistency. Using CASE tools, I can define completeness of
specification and its consistency. But, I can not tell whether
it is correct or not. I used to work on a fast computer
machine. This CASE tools is very slow and not very well put
together. It does not tell me what I want to know and makes me
feel uncomfortable."

32. Subject reviews analysis reports on paper and detects problems, then
comments:
(5 minutes)

" There are problems in several records. Some of them do
not have primary key. To my knowledge, every record should
have a key if it is stored."

33. Subject detects more problems on reports, and comments:
(2 minutes)

" Some records have primary key and its description,
foreign key, labeled on one level and unlabeled on another
levels. A question about this report is what does it mean. I
need to do something. But the model has serious problems based
on data, analysis rules. Note of errors found:

(1) a number of unlabeled data flows on a context
diagram, this is minor problems and can be easily corrected

(2) some data flows have problems with no keys and
duplicated record, some data stores have index that is not
stored in the record

I conclude that previous data analysis done on this
specification is poor and it is too large to be fixed."

34. Subject decides to take five minutes break from CASE tools, walks
around the experimental room and attempts to organize ideas together
(5 minutes)

35. Subject returns and resumes the experiment

www.manaraa.com

205

36. After several minutes of rethinking about the problems with the
specification, subject comments:
(12 minutes)

" What would I do with these problems?...X would make
additional survey of current system specification on CASE tools
to clarify and define these problems.

Start from data analysis. If data store has an index but
does not appear in the record content, I must review data store
"A" structure and test each elements to see whether it belongs
to data store "A" or not. Then, data store "B" and "C".

I expect to find any data description everywhere when I am
doing specification analysis, people do not work from "Top
down". They don not want to stop their analysis to describe
data store "A" or "B". I am paralyzed by such analysis
sequence. I must work on imperfect knowledge to identify
problems at their process instead of at the end product. I can
not wait until complete this process because I know I will not
have a complete product. If I continue this analysis, I will
identify some area that may be worth for reorganization of
these problems on specification and problem with business
itself.

Next question is how do I know what changes do I need to
make or correct? The size of this problem is large and full of
related errors which will take time to correct all of them. I
want data analysis technique that can tell me what to do, how
to do backup before change and copy new ones. So, when I
change it even though it is a minor problem, I can keep track
of it. I need CASE tool that provide capability to do a "flip-
flop" between specification, problem description, and save time
on changes."

37. Subject decides to return to the extended analysis feature on CASE
tool, reviews the changed specification, and comments:
(1 minute)

" The machine is too slow."
38. Subject executes a model modification option, and comments:

(5 minutes)
" I find no data model, no E-R diagram, then I am left with
even more problems. The problem is I have model that build
from business process activities not data point of view."

39. Subject feels uncomfortable and decides to stop with the following
reasons and comment:
(15 minutes)

" If I have to fix all problems and errors in this large
problem, I need to do a quick trade-off analysis as earliest as
possible to see whether I can fix it within a given time
constrain or not, or start the analysis all over again from
scratch.

I need to identify the scope, run all reports as many as I
can, list all names, and then check it with user requirement
and real problems. I need the layout of the entire scope and
problem on one screen. I need tools that can fix minor errors,
not just detect them, and save my time.

If I have to fix this problem, I will take approximately
one week to look at all previous specification and analysis
results, and compare tools, models, people and their skills. I
will charge at least $30 per hour for 40 hours, a total of
$1,200 just to tell how long I will take to fix all problems
given unlimited access to real users and a full support from
management."

40. Subject decides to continue detecting and correcting errors found in
data flow diagrams until he/she feels comfortable and decides to
stop.
(60 minutes)

www.manaraa.com

206

APPENDIX H (Continued)

Report Number:
Subject code:
Total Time:
Tool Used:
Complexity:
Experience:

2
122-1
135 minutes
CASE tool
Low (simplel
Hioh fmore>

List of Activities:

1. Subject starts reading problem description and instruction provided
on a floppy diskette and IBM PC AT (5 minutes)

2. When finish, subject starts using CASE tools to review the first
context data flow diagrams via graphic feature on screen
(7 minutes)

3. Subject finds a few errors and corrects them right away.
Subject changes format of entity label in order to make it easier to
see and understand.
Subject checks each external entities, data flows, and process on
context data flow diagram such as Meter- reader, Compute-new-bill,
Customer-payment, Customer- monthly-statement, Unit-charge-record,
and Meter-number, then decides to explode a context data flow diagram
to lower level via graphic feature to get more information (20
minutes)

4. At the first level'of data flow-diagram, subject checks data
dictionary for Compute-new-bill element, then decides to list all of
data flow diagrams and their description provided on diskette.
Subject looks at the list and description on screen and, again,
checks data dictionary for process on context data flow diagram, then
finds no errors at context diagram level
(5 minutes)

5. Subject explodes context data flow diagram into lower level, looks
and changes description of the billing process, then returns to
context data flow diagram level (2 minutes)

6. Subject corrects customer external entity description, meter-reader
data flow, customer-payment description, then explodes a "Payment-
record" and describes "Customer-payment" data flow
(5 minutes)

7. When finish, subject adds "Taxes and Franchise-charge", "Customer-
balance" and "Grand-total" to the "Customer-payment" data flow
description
(5 minutes)

8. Subject detects error with Meter-reading data flow, corrects it and
add its description
(2 minutes)

9. Subject detects next errors with "Unit-charge", "Meter-number" and
"Customer" data flows, corrects each error and explodes to lower
level of data flow diagram (level 1)
(10 minutes)

10. Subject detects more errors and corrects them right away, starting
from data flows, processes and data stores
(21 minutes)

11. When finish, subject exits level 1 data flow diagram and enters lower
level data flow diagram (diagram 3), detects errors and corrects one
by one, then saves and returns to higher level data flow diagram
(level 1)
(17 minutes)

12. Subject decides to enter data dictionary feature, generates and
prints a list of data flows from data dictionary
(15 minutes)

www.manaraa.com

207

13. Using a list of data flows, subject corrects name, label and
description of data flows in data dictionary, and comments:
(1 minute)

"....I would eliminate all of duplication in data dictionary if
I have two more hours."

14. Subject returns to graphic feature and corrects remaining errors, and
comments:
(1 minute)

"....I do not want to use analysis feature for this problem
because X can not understand what is going on inside once I
have changed data flow diagrams."

15. When finish with rechecking with corrected errors, subject satisfies
with his/her new specification and decides to Btop.
(9 minutes)

www.manaraa.com

208

APPENDIX H (Continued)

Report Number: 3
Subject code: 212-1
Total Time: 140 minutea
Tool Used: Manual Tool
Complexity: High (complex)
Experience: High (morel

List of Activities:

1. Subject starts reading problem description and instruction provided
on a paper
(2 minutes)

2. When finish, subject starts looking at context data flow diagram,
then takes the remaining data flow diagrams apart and spreads them on
the table in the sequence of data flow diagram levels and numbers
(5 minutes)

3. Subject checks context diagram against data flow diagram level 1, and
performs level balancing check to see the connection to all of the
remaining data flow diagrams
(3 minutes)

4. While looking at context diagram, subject detects many errors in
context diagram such as missing data flows, arrow heads, external
entities are not balanced with lower level diagrams, and corrects
these obvious errors right away, then check for consistency and
numbering between diagrams
(7 minutes)

5. When finish, subject forwards to lower level diagram (level 1),
detects several errors such as missing arrow heads, data flow name,
data flows between processes, process numbers, then correct these
errors one by one
(13 minutes)

6. Subject enters data flow diagram 1.0, performs level balancing for
errors, detects several errors in diagram 1-0, and corrects errors
one by one, then forwards to data flow diagram 2.0
(5 minutes)

7. Within diagram 2.0, subject uses data flow diagram level 1 and an
extra blank paper as a note for an "off-page and interface
connector", then detects and corrects errors such as missing data
flows between process 2.2 to Item-master-file, missing data flow into
Purchase-order-file, removes Order-transaction-file from this
diagram, and comments:
(3 minutes)

" I use an off page label or put off page connector because
it is confusing at this lower level of data flow diagrams to
keep track of what is coming in and going out of these
diagrams."

8. Subject enters diagram 3.0, checks level balancing between diagram
3.0 and data flow diagram level 1, detects several errors such as
missing data flows which are displayed at higher level, missing data
flow name, inconsistent data flow name and process name at lower
level, and missing data flow arrow heads, then correct these errors
one by one on this diagram
(14 minutes)

9. Subject enters diagram 4.0, performs level balancing, detects errors
and correct them one by one, and comments: (10 minutes)

" I do not know why shipping shedule is not coming in to
process 4.0. This is level balancing problems in diagram 4.0.
I am not sure why order is comming from managment and why

www.manaraa.com

209

customer-invoice-information is here, unless it is used by
managment department."

10. Subject performs similar level balancing on diagram 5.0, 6.0, and 7.0
respectively, detects many errors and corrects them one by one until
subject satisfies with the specification
(24 minutes)

11. When finish with error detection and correction, subject redraws and
rewrites new specification.
(54 minutes)

www.manaraa.com

210

APPENDIX H (Continued)

Report Number: 4
Subject code: 112-1
Total Time: 30 minutes
Tool Used: Manual Tool
Complexity: Low (simple1
Experience: High (more)

LiBt of Activities:

1. Subject starts reading problem description and instruction provided
on paper, and makes note on separate paper about the problem for
later used without looking at data flow diagrams, data dictionary or
process description
(6 minutes)

2. When finish reading problem, subject quickly browses through data
flow diagrams, data dictionary and process description, then starts
detecting errors on a context data flow diagram and corrects them
right away, and comments:
(2 minutes)

" I have a question about this data flow diagram. Is it a
physical or logical? I assume it is a physical data flow
diagram. Therefore, the meter reading is not modified.
Process 1.0 may be eliminated."

3. Within a context data flow diagram, subject detects another errors
and comments:
(2 minute)

" A "Customer-payment" data flow from customer external
entity to the process has a reverse direction. A "Customer-
payment" data flow is not identified in problem description. I
will change the direction of this data flow from process to
customer external entity."

4. Subject turns to the next page, a data flow diagram level 1, and
detects several errors such as unlabelled data flow to Process 2.0,
missing process number for "Compute-new-bill" process, then corrects
these errors on data flow diagram, and comments:
(2 minutes)

" There is a problem between process 3.0 and 4.0, "Compute
new bill" and "Prepare statement" processes. Data flow named
"New-bill" from process 3.0 to 4.0 is different from "Customer-
monthly-statement" at upper level data flow diagram, and why
process 4.0 get customer record? I assume that customer record
is part of process 3.0 and 4.0. I will consolidate the
physical flow of these two processes."

5. Subject turns to the next page, a lower level data flow diagram 3.0,
and checks it against data flow diagram level 1 on previous page.
Subject detects errors such as duplicated data flow names "Meter-
reading" from process 1.0 to process 2.0, and from process 2.0 to
process 3.0, and corrects them by giving them different names with
assumption that they must be used and changed for computing the
differences in the actual usage of electricity
(2 minutes)

6. Within data flow diagram 3.0, subject detects other errors and
comments:
(5 minutes)

" Process 3.4 computes an amount of tax. It needs input
from source such as Tax file or external Tax file from upper
level that provides a tax utility rate. I will add a Tax file
as external file at upper level of data flow diagram."

www.manaraa.com

211

7. Subject turns to data dictionary page and corrects data dictionary
description to fit with his/her correction, and comments:
(3 minutes)

" This data dictionary is the similar to the description of
each data element."

8. Subject turns to process description pages, and add process
description according to his/her correction on data flow diagrams
(5 minutes)

9. Subject returns to data flow diagram 3.0 and changes data flows and
adds utility tax rate as part of customer record data flow, then
returns to process description for process 3.4 and adds description
for utility tax rate and its computation, and comments:
(3 minutes)

" If I have to redraw and clean up the specification
documents, X need more writing pad or prefer sophisticated
tools than paper and pencil. I have to do a lot of flipping
between three or five data flow diagrams and process
description or data dictionary. I wish to have a windowing
environment."

10. When finish updating specification, subject feels comfortable with
his/her new specification and decides to stop.

www.manaraa.com

212

APPENDIX I

EXAMPLE OF POST-EXPERIMENTAL INTERVIEW

Subject Code:
Case Problem#:
Tool Used:

1. Which tool would you rather use in this excercise? (check one)

1() CASE tool
2() Manual tool

2. Why?

3. If select CASE Tool:

What advantages would CASE tool have given you?

What disadvantages would CASE tool have given you?

4. If select manual Tool:

What advantages would manual tool have given you?

What disadvantages would manual tool have given you?

5. Other comments:

www.manaraa.com

213

APPENDIX J

EXAMPLE OF ANALYSIS REPORT

Date: 24-Jun-90 LEVEL BALANCING Page X
Time: 16:07
PROJECT NAME: Project

LEVEL NUMBER: 1
PARENT GRAPH NAME: Context-diagram

Parent Process: 0
Child Type: DFD Name: DFD-1

Parent INPUTS not matched on child level

TYPE ID CARRIED IN FLOW ID

ELEMENT Item-number DATA Customer-•order
ELEMENT Customer-order-number DATA Customer-order
ELEMENT Order-quantity DATA Customer-order
ELEMENT Customer-last-name DATA Customer-order
ELEMENT Customer-first-name DATA Customer-order
ELEMENT Customer-street DATA Customer-•order
ELEMENT Customer-city DATA Customer-•order
ELEMENT Cu stomer-st ate DATA Customer-order
ELEMENT Customer-zip-code DATA Customer-order
ELEMENT Forecast-quantity DATA Forecast-demand-rate
ELEMENT Supplier-number DATA Supplier-•invoice
ELEMENT Supplier-number DATA Supplier-invoice
ELEMENT Supplier-address DATA Supplier-•invoice
ELEMENT Received-quantity DATA Supplier-•invoice

Parent OUTPUTS not matched on child level

TYPE ID CARRIED IN FLOW ID

ELEMENT Item-number DATA Planned-order-report
ELEMENT Reorder-quantity DATA Planned-order-report
ELEMENT Release DATA Management-dec is ion
ELEMENT Cancel DATA Management-decision
ELEMENT Customer-order-number DATA Customer-invoice-informat
ELEMENT Order-quantity DATA Customer-invoice-informat
ELEMENT Customer-last-name DATA Customer-invoice-informat
ELEMENT Customer-first-name DATA Customer-invoice-informat
ELEMENT Customer-street DATA Customer-invoice-informat
ELEMENT Customer-city DATA Customer-invoice-informat

www.manaraa.com

214

APPENDIX J (Continued)

Date: 24-Jun-90 LEVEL BALANCING Page X
Time: 16:11
PROJECT NAME: Project

Graph Object Summary

CHILD CHILD
OBJECT NOT TYPE NOT IN
TYPE I/L OR LABEL DESCRIBED N/A FOUND BALANCE

PROCESS I 1.0 X

LEVEL NUMBER: 3
PARENT GRAPH NAME: Diagram 1.0

Graph Object Summary

OBJECT
TYPE I/L OR LABEL

NOT
DESCRIBED

CHILD
TYPE
N/A

CHILD
NOT
FOUND

IN
BALANCE

PROCESS I 1.1 X
PROCESS I 1.2 X
PROCESS I 1.3 X

LEVEL NUMBER: 3
PARENT GRAPH NAME:

OBJECT
TYPE

Diagram 2.0

Graph Object Summary

I/L OR LABEL

CHILD CHILD
NOT TYPE NOT IN
DESCRIBED N/A FOUND BALANCE

PROCESS I 2.1 X
PROCESS I 2.2 X

LEVEL NUMBER: 3
PARENT GRAPH NAME:

OBJECT
TYPE

Diagram 3.0

Graph Object Summary

I/L OR LABEL

CHILD CHILD
NOT TYPE NOT IN
DESCRIBED N/A FOUND BALANCE

PROCESS I 3.1 X
PROCESS I 3.2 X
PROCESS I 3.3 X

www.manaraa.com

215

APPENDIX J (Continued)

Date: 24-Jun-90 EQUIVALENT RECORDS Page X
Time: 16:27
PROJECT NAME: Project

DESCRIPTION: This report lists pairs of top-level records with
logically equivalent contents. Records A and B have the

- 'same lowest-level contents•, though-they may group and
order those contents differently.

RECORD A IS EQUIVALENT TO RECORD B

Cycle-counting-report Item-master-file
Cycle-counting-report Update-inventory-report
Item-master-file Update-inventory-report

Date: 24-Jun-90 FOREIGN KEYS (ALL LEVELS) Page X
Time: 16:33
PROJECT NAME: Project

DESCRIPTION: This report lists each record whose key occurs in one or
more other records and is therefore a foreign key. The
left hand column lists each original record and its key
(indented). The right hand column lists each record that
contains the origin key as either key or nonkey elements.

KEY IS FOREIGN KEY IN RECORD NAME (S)

(REC) Supplier-invoice Order-transaction
(ELE 3) Receive-quantity

www.manaraa.com

BIBLIOGRAPHY

Acly, E. (1988, March). Looking beyond CASE. IEEE Software,
pp. 39-45.

Adelson, B., & Soloway, E. (1985, November). The role of
domain experience in software design. IEEE Transactions
on Software Engineering, pp. 1351-1360.

Adelson, B. (1984). When novices surpass experts: the
difficulty of a task may increase with expertise.
Journal of Experimental Psychology: Learning. Memory,
and Cognition. 10(3), 483-495.

Alavi, m. (1985). High productivity alternatives for
software development. Journal of Information Systems
Management. 2.(4), 19-24.

Albrecht, A. J. (1979). Measuring application development
productivity. Proceedings on IBM Applications
Development Symposium. GUIDE Int. and SHARE Inc., IBM
Corp. Montrerey, California, 83.

Alloway, R. M., & Quillard, J. A. (1983, June). User
manager's systems needs, MIS Quarterly, pp. 27-41.

Arthur, L. J. (1985). Measuring programmer productivity and
software gualitv. Wiley-Interscience.

Banker, D. R., Datar, S. M., & Zweig, D. (1989). Software
complexity and maintainability. Proceedings of the
Tenth International Conference on Information Systems.
Boston, Massachusetts, 247-256.

Basili, V. R., & Perricone, B. T. (1984, January). Software
errors and complexity. Communications of the ACM, pp.
42-50.

Basili, V. R., & Zelkowitz, M. (1978). Analyzing medium
scale software development. Proceeding of the 3rd
International Conference on Software Engineering. IEEE.
116-123.

216

www.manaraa.com

217

Bastani, F. & Iyengar, S. (1987, March). The effects of data
structures on the logical complexity of programs.
Communications of the ACM, pp. 250.

Batra, D., & Davis, J. G. (1989). A study of conceptual
data modeling in database design: Similarities and
differences between expert and novice designers.
Proceedings of the Tenth International Conference on
Information Systems. Boston, Massachusetts, 91-100.

Benbasat, I. & Vessey, I. (1980, June). Programming and
analyst time/cost estimation. MIS Quarterly, pp. 31-43.

Beruvides, M. G., & Sumanth, D. J. (1987). Knowledge work: A
conceptual analysis and structure. In D. J. Sumanth
(Ed.), Productivity management frontier (pp. 127-137).
Amsterdam: Elsevier Science Publishers.

Betts, M. (1987, January 19). Firm readies automation tools.
ComputerworId. pp. 13.

Boehm, B. W. (1981). Software engineering economics. New
Jersey: Prentice-Hall.

Boehm, B. W. (1987, September). Improving Software
Productivity. IEEE Computer, pp. 43-57.

Boehm, B. W. (1984, January). Verifying and validating
software requirements and design specification. IEEE
Software, pp. 75-88.

Brooks, F. P., (1987, April). No silver bullet: essence and
accidents of software engineering. Computer. pp. 10-
19.

Bubenko, J. A. (1986). Information system methodologies: A
research view. In T. W. Olle, H. G. Sol, & A. A.
Verrijn-Stuart. (Eds). Information systems
methodologies: A framework for understanding (pp.
289-313). North-Holland: Elsevier Science.

Case, A.F. (1985, Fall). Computer-Aided Software Engineering
(CASE): Technology for improving software development

www.manaraa.com

productivity. Data Base, pp. 35-42.

218

Chen, P. (1989, April). The entity-relationship approach.
Bvte. pp. 230-233.

Chikofsky, E. J., & Rubenstein, B. L. (1988, March). CASE:
Reliability engineering for information systems. IEEE
Software. pp. 11-17.

Chikofsky, E. J. (1988, March). Software technology people
can really use. IEEE Software, pp. 8-10.

Chrysler, E. (1978, June). Some basic determinants of
computer programming productivity. Communications of
the ACM, pp. 472-483.

Conner, A. J., & Case, A. F. (1986, July 9). Making a case
for CASE. ComputerworId. C.W. Communication.

Constantine, L. L. (1989, April). The structured-design
approach. Bvte. pp. 232-233.

Corkery, M. (1986, November/December). XL/Tutor: 1986
Excelerator user survey results. Intechniaues. Index
Technology Corporation, 4.

Curtis, B., Krasner, H. & Iscoe, N. (1988, November). A
field study of the software design process for large
system. Communication of the ACM, pp. 1268-1287.

Davis, G. B., & Olson, M. H. (1984). Management Information
Systems; Conceptual foundations, structure, and
development. New York: McGraw-Hill.

DeMarco, T. (1978). Structured Analysis and System
Specification. New York: Yourdon Inc.

Doe, D., & Bersoff, E. (1986, November). The software
productivity consortium (SPC): An industry initiative
to improve the productivity and quality of
mission-critical software. Journal of System and
Software. 6, 4, 367-378.

www.manaraa.com

219

Ehrlich, W. K., lee, K. S., & Molisani, R. H. (1990, March).
Applying reliability measurement: A case study. IEEE
Software, pp. 56-64.

Eilon, S., Gold, B., & Soesan, J. (1976). Applied
productivity analysis for industry. New York: Pergamon
Press.

Eilot, L. B. (1985). An investigation of information
requirements determination and analogical problem
solving. PhD. dissertation, University of Southern
California.

Emory, C. W., (1976). In R. B. Fetter, & C. McMillan (Eds).
Business research methods. Illinois: Richard D. Irwin.

Esterling, R. (1980, March). Software manpower costs: A
model. Datamation. pp..164-170.

Fickas, S. & Nagarajan, P. (1988, November). Critiquing
software specification. IEEE Software, pp. 37-46.

Fraser, M., Kumar, K., Vaishnavi, V. (1991). Informal and
formal requirements specification languages: bridging
the gap (Tech. rep. no. CIS-90-004). Atlanta: Georgia
State University, Department of Computer Information
systems.

Fromkin, H. L., & Streufert, S. (1983). Laboratory
Experimentation. In M. D. Dunnette (Ed.), Handbook of
industrial and organizational psychology (pp. 415-466).
New York: John Wiley & Sons.

Gane, C. (1989, April). The Gane-Sarson approach. Byte, pp.
224-226.

Gane, c. & Sarson, T. (1979). Structure systems analysis:
Tools and technigues. New Jersey: Prentice-Hall.

Gilb, T. (1973). Reliable EDP application design. New York:
Petrocelli Books.

www.manaraa.com

220

Gilb, T. (1977). Software Metrics. Massachusetts: Winthrop.

Glass, R. L. (1979). Software reliability guidebook. New
Jersey: Prentice-Hall.

Gordon, B. D. (1988, June). Productivity gains form
Computer-Aided Software Engineering. Accounting
Horizons. 2.

Gradwell, D. J. L. (1987). A review of analyst workbench
products. Analyst Workbenches. England: Pergamon,
63-84.

Grant-MacKay, J. M. (1987). Expert-novice problem solving
behavior: a comparative study of task and technology.
Unpublished PhD. dissertation, MSIS Department,
University of Texas at Austin.

Guindon, R., & Curtis, B. (1988). Control of cognitive
processes during software design: what tools are
needed?. Communications of the ACM, pp. 263-2 67.

Halstead, M. H. (1977). Elements of software science. New
York: Elsevier North-Holland Incorporated.

Hartog, C., & Herbert, M. (1986, December). 1985 Opinion
survey of MIS managers: key issues, MIS Quarterly, pp.
351-361.

Herbert, M. & Hartog, C. (1986, November). MIS rates the
issues. Datamation. 32, 22, pp. 79-86.

Hoffnagle, G. F., & Beregi, W. E. (1985). Automating the
software development process. IBM Systems Journal.
24(2).

Ives, S., Hamilton, S., & Davis, G. B. (1980, September). A
framework for research in computer-based management
information systems. Management Science, pp. 910-934.

Jalote, P. (1989, May). Testing the completeness of
specifications. IEEE Transactions on Software

www.manaraa.com

221

Engineering. 15(5), pp. 526-531.

Jeffery, D. R. (1987). Software engineering productivity
models for management information system development.
In R. J. Boland Jr., & R. A. Hirschheim (Eds.).
Critical Issues in Information Systems Research (pp.
113-134). New York: John Wiley & Sons Ltd.

Jeffery, D. R. (1987). The relationship between team size,
experience, and attitudes and software development
productivity. IEEE, pp. 2-8.

Jenkins, M. A. (1985). Research methodologies and MIS
research. In E. Mumford, R. Hirschheim, G. Fitzgerald,
& T. Wood-Harper (Eds.). Research Methods in
Information Systems. North-Holland: Elsevier Science
Publishers B.V.

Jones, T. C. (1978). Measuring programming quality and
productivity. IBM System Journal, 17(1), 39-63.

Kearrey, J. K. & Sedlmeyer, R. L. (1986, November). Software
complexity measurement. Communications of the ACM, pp.
1044-1051.

Keen, P. G. W. (1981). Decision support systems: a research
perspective. In G. Fisk, and R. L. Sprague Jr. (Eds).
Decision support systems: issues and challenges (pp.
23-44). Oxford: Pergamon Press.

Keen, P. G. W. (1981, January). Information systems and
organizational change. Communications of the ACM, pp.
24-33.

Keen, P. G. W. & Scott-Morton, M. S. (1978). Decision
support systems: an organizational perspective.
Massachusetts: Addison-Wesley.

Kolodner, J. L. (1983). Towards an understanding of the role
of experience in the evolution from novice to expert.
International Journal of Man-Machine Studies. 19.
497-518.

www.manaraa.com

222

Konsynski, B. R. (1984). Advances in information system
design. Journal of Management Information Systems.
1(3), 5-32.

Konsynski, B. R. & Kotteman, J. E. (1981). Complexity
measures in system development. Proceedings of the
Second International Conference on Information Systems.
Cambridge, Massachusetts, 173-200.

Konsynski, B. R., Kotteman, J. E., Nunamaker, J. F., Jr.,
and Scott, J. W. (1984). PLEXSYS-84: An integrated
development environment for information systems.
Journal of Management Information Systems. 1(3), 64-
104.

Langefors, B. (1973). Theoretical analysis of information
systems. Sweden: Auerbach.

Langle, G. B. (1988). An investigation of the effect of
specific knowledge in functional areas of business on
information system analysis and design. PhD.
dissertation. University of Minnesota.

Larkin, J., McDermott, J., Simon, P. D., & Simon, H. A.
(1980, June). Expert and novice performance in solving
physics problems. Science, pp. 1335-1342.

Lew, K. S., Dillon, T. S., & Forward, K. E. (1988,
November). Software complexity and its impact on
software reliability. IEEE Transactions on Software
Engineering, pp. 1645-1655.

Lewis, W. P., & Sier, G. H. (1983, February). The diagnosis
of plant failure: A comparison of student and
professional engineers. IEEE Transactions on
Engineering Management. pp. 12-17.

Lucus, H. C., & Kaplan, R. B. (1976). A structured
programming experiment. Computer Journal. 19. 136-138.

Lyytinen, K. & Lehtinen, E. (1984). On information modeling
through illocutionary logic. In H. kangassalo (Ed.),
Report of the third Scandinavian research seminar on
information modeling and data base management (pp.35-

www.manaraa.com

223

118). Univeristy of Tampere, Tampere, Finland.

Mann, R. D. (1959). A review of the relationships between
personality and performance in small groups.
Psychological Bulletin. 56, 244-270.

March, J.G. (Ed.). (1965). Handbook of Organizations.
Chicago: Rand McNally.

Marcus, L. & Nelson, R. (1989, July). Reaping CASE harvests.
Datamation. pp. 31-34.

Margolis, N. (1988, September). CASE still lagging.
ComputerworId. pp. 23-26.

Margolis, N. (1988, October). CASE methodologies.
ComputerworId. pp. 118-120.

Martin,1 C. F.r(1988March). Second-generation CASE tools: A
challenge to vendors. IEEE Software.PP. 46-49.

Martin, C. F. (1990, March). SWAT teams will play pivotal
role in '90s development. PC Week, pp. 62-63.

McCabe, J. T., & Butler, C. W. (1989, December). Design
complexity measurement and testing. Communication of
the ACM, PP.' 1415-1425. '

McCabe, J. T. (1976). A complexity measure. IEEE
Transactions on Software Engineering. SE-2(4), pp.
308-320.

McCall, J., Richards, P., & Walters, G. (1977). Factors in
software gualitv. (NTIS No. AD-A049-014, 015, 055)

McClure, C. (1989). CASE is software automation. New Jersey:
Prentice Hall.

McClure, C. (1989, April). The CASE experience. Byte, pp.
235-244.

www.manaraa.com

224

Meyer, M. H., & Curley, K. F. (1989). A methodology for
classifying the complexity of expert systems: A pilot
study. Proceedings of the Tenth International
Conference on Information Systems. Boston,
Massachusetts, 31-40.

Miller, H. W. (1989, December). Quality software: The future
of information technology. Journal of Systems
Management. 8-14.

Mills, H. D., & Dyson, B. P. (1990, March). Using metrics to
quantify development. IEEE Software, pp. 15-16.

Mumford, E. (1981). Participative systems design: structure
and method. Systems. Objectives. Solutions. 1.(1), 5-19.

Necco, C. R., Tsai, W. N., and Holgeson, K. R. (1989).
Current usage of CASE software. Journal of Systems
Management. 39, 5, 6-11.

Neter, J., Wasserman, W., & Kutner, M. (1985). Applied
linear Statistical Models. Illinois: Irwin.

Newman, P. S. (1982). Towards an integrated development
environment. IBM Systems Journal. 2.1(1), 81-107.

Norman, R. J., & Nunamaker, J. F. (1988). An empirical study
of information systems professionals* productivity
perceptions of CASE technology. Proceeding of the
Ninth International Conference on Information Systems.
Minneapolis, 111-118.

Norman, R. J., & Nunamaker, J. F. (1989, September). CASE
Productivity Perceptions of Software Engineering
Professionals. Communications of the ACM, pp.
1102-1109.

Olle, W. T., Hagelstein, J., MacDonald, I. G., Rolland, C.,
Sol, G. H., Van Asche, J. M. F., & Verrijn-Stuart, A.
A. (1986). Information systems methodologies: A
framework for understanding. New York: Elsevier
Science.

www.manaraa.com

225

Orlikowski, W. J. (1989). Division among the ranks: The
social implications of CASE tools for the system
developers. Proceeding of the Tenth International
Conference on Information Systems. Boston,
Massachusetts, 199-210.

Orr, K., Gane, K, Yourdon, E., Chen, P. P., & Constantine,
L. L. (1989, April). Methodology: The experts speak.
Bvte. pp. 221-233.

Orr, K. (1989, April). The Warnier-Orr approach. Bvte. pp.
221-223.

Ovideo, E. I. (1980). Control flow, data flow and program
complexity. Proceedings of IEEE COMPSAC (pp. 146-152).
Chicago, Illinois.

Palloto, J. (1988, November 29). Ken Orr on CASE: acceptance
grows as plaform prices dip. PC week, pp. 31-34.

Pietrasanta, A. M. (1980). Appendix D: Position paper on
software productivity. In R. F. Cotellesa (Ed.),
Identifying research areas in the computer industry to
1995 (pp. 148). New Jersey: Stevens Institute.

Pressman, R. S. (1987). Software engineering: A
practitioner's approach. New York: McGraw-Hill.

Prieto-Diaz, R. (1987). Domain analysis for reusability.
IEEE, pp. 3-29..

Puncello, P. P., Torrigiani, P., Pietri, F., Burlon, R.,
Cardile, B., & Conti, M. (1988, March). ASPIS: A
knowledge-based CASE environment. IEEE Softwaref pp.
58-65.

Putnam, L. (1987). A general empirical solution to the macro
software sizing and estimating problem. IEEE
Transaction of Software Engineering. 4.(4) , pp. 345-361.

QED Information Science, Inc. (1989). Critical issues in
information processing management and technology (Vo.
5). Wellesley, Massachusetts: Author.

www.manaraa.com

226

QED Information Science, Inc. (1989) . Critical issues in
information processing management and technology (Vo.
2). Wellesley, Massachusetts: Author.

Rettig, C. B. (1988, August). Survey quiz CASE users and
vendors. Electrical Design News, pp. 277-288.

Rosenthal, R., & Rosnow, R.L. (1969). Artifact in behavioral
research. New York: Academic Press.

Rubin, H. A. (1983, July). Macro-estimation of software
development parameters: The Estimacs system. Softfair
Proceedings. IEEE, pp. 109-118.

Ryan, A. J. (1989, October). Survey says: bigger budget,
more CASE. ComputerworId. pp. 120-122.

Shneiderman, B. (1977). Measuring computer program quality
and comprehension. International Journal of Man-Machine
Studies. 9, 465-478.

Simon, H. A. (1981). Sciences of the Artificial. Cambridge,
Massachusetts: The MIT Press.

Smith, G. F. (1989, September/October). Representational
effects on the solving of an unstructured decision
problem. IEEE Transactions on Systems. Man, and
Cybernetics. 19(5) , pp. 1081-1090.

Sternberg, R. J., & Davidson, J. E. (1982, June). The mind
of the puzzler. Psychology Today, pp. 37-44.

Stogdill, R.M. (1948). Personal factors associated with
leadership. Journal of Psychology. 25, 35-71.

Stone, E. (1978). Research methods in organizational
behavior. California: Goodyear.

Sumanth, D. J. (1987). Productivity management frontiers-I.
Amsterdam: Elsevier.

www.manaraa.com

227

Suydam, W. (1987, January 1). CASE make strides toward
automated software development. Computer Design, pp.
49-58.

Symonds, A. J. (1988, March). Creating a
software-engineering knowledge base. IEEE Software, pp.
50-57.

Symons, C. R., (1988, January). Function point analysis:
difficulties and improvement. IEEE Transactions on
Software Engineering, pp. 2-10.

Thadhani, A. J. (1984). Factors affecting programmer
productivity during application development. IBM
Systems Journal. 23.(1), 19-35.

Turner, J. A. (1981). A method for measuring some properties
of information systems. Proceedings of the Second
International Conference Proceedings on Information
Systems. Cambridge, Massachusetts, 259-276.

Turner, J. A. (1987). Understanding the elements of system
design. In R. J. Boland Jr., & R. A. Hirschheim (Eds.).
Critical Issues in Information Systems Research (pp.
97-112). New York: John Wiley & Sons Ltd.

Vessey, I. (1985). Expertise in debugging computer programs:
A process analysis. International Journal of
Man-Machines Studies. 23, 459-494.

Vessey, I., & Webber, R. (1984). Research on structured
programming: an empiricist's evaluation/ IEEE
Transactions on Software Engineering. SE-10, 4, pp.
397-407.

Vitalari, N. P. (1985, September). Knowledge as a basis for
expertise in system analysis: an empirical study. MIS
Quarterly. pp. 221-241.

Vitalari, N. P., & Dickson, G. W. (1983, November). Problem
solving for effective systems analysis: an experimental
exploration. Communication of the ACM, pp. 948-956.

www.manaraa.com

228

Wallace, R. D., & Fujii, R. U. (1989, May). Software
verification and validation: An overview. IEEE
Software. pp. 10-17.

Walston, C. & Felix, C. (1977). A method for programming
measurement and estimation. IBM Systems Journal. 16.(1),
54-73.

Warnier, J. D. (1974). Logical construction of programs. Van
Nostrand Reinhold.

Warnier, J. D. (1981). Logical construction of systems. Van
Nostran Reinhold.

Wasserman, A. J., Pircher, P.A., Shewmake, D. T., and
Kersten, M. L. (1986, February). Developing interactive
information systems with the user software engineering
methodology. IEEE Transactions on Software Engineering,
pp. 326-345.

Watkins, P. R. (1981). A measurement approach to cognitive
complexity and perception of information: Implications
for information systems design. Proceedings of the
Second International Conference on Information Systems.
Cambridge, Massachusetts, 7-20.

Weick, K. E. (1965). Laboratory experiments with
organizations In J. G. march (Ed.), Handbook of
organizations (pp. 194-260). Chicago: Rand Mcnally.

Weissman, L. M. (1974). A methodology for studying the
psychological complexity of computer programs. PhD.
dissertation. University of Toronto, Canada,
Unpublished.

Welke, R. (1983). IS/DSS: DBMS Support for Information
Systems Development. In C.W. Holsapple, & A.B.
Whinston (Ed.), Proceedings of the NATO Advanced Study
Institute, (pp. 195-250). Estoril, Portugal, June 1-14,
1981. Holland/Boston: D. Reidel.

Weyuker, E. J. (1988, September). Evaluating software
complexity measures. IEEE Software, pp. 1357-1365.

www.manaraa.com

229

Whitten, J. L., Bentley, L. D., and Ho, T. I. M. (1986).
System analysis and design methods. California:
Mirror/Mosby College.

Wiedenbeck, S. (1985). Novice/expert differences in
programming skills. International Journal of Man-
Machine Studies. 23. 383-390.

Wright, P. L. (1974). The harassed decision maker: time
pressures, distractions and the use of evidence.
Journal of Applied Psychology. 59, 555-561.

Yeh, R. T. (1982). Requirement analysis: A management
perspective. IEEE, pp. 410-416.

Yellen, R. E. (1990, April). System analyst performance
using CASE versus manual methods. IEEE, pp. 497-501.

Yourdon, E. (1989). Modern structured analysis. New Jersey:
Prentice-Hall.

Yourdon, E. (1989, April). The Yourdon approach. Byte, pp.
227-229.

Yourdon, E. (Ed.). (1979). Classics in software engineering.
New York: Yourdon Press.

Yourdon, E., & Constantine, L. (1979). Structured design:
Fundamentals of a discipline of computer program and
systems design. New Jersey: Prentice-Hall.

www.manaraa.com

VITA

Metta Ongkasuwan (Hiranyavasit) was born on June 8, 1958

in Chiengrai, Thailand. She is a daughter of Mr. Koon and

Mrs. Aree Ongkasuwan. She has been married to Mr. Chairat

Hiranyavasit since September 8, 1984. She received a Bachelor

of Science degree in Chemical Engineering from Chulalongkorn

University, Bangkok, Thailand in 1980. Upon her graduation,

she was trained and worked with Thai Oil Refinery Company in

Sriracha, Thailand. She received a Master of Business

Administration degree in Information Systems from University

of Baltimore, Maryland, USA in 1983. In 1984, she joined IBM

corporation in Atlanta, Georgia, as a system designer and

application programmer in information systems for

administration and telecommunication department. While

joining IBM corporation, she started working toward her

doctoral program in Management of Information Systems at

Georgia State University, Atlanta, Georgia. During her

doctoral study, she had worked as research assistant for MRP

II and Image Processing System projects. In 1989, she started

her graduate teaching assistant in the Department of Computer

Information Systems, Georgia State University, Atlanta,

Georgia. She has joined the department of Management

Information Science, California State University, Sacramento,

California as an associate professor of Management Information

Systems since 1990. Her permanent address is 20/70 Soi

Ladproud 87, Bangkapi, Bangkok 10240, Thailand.

230

